Лекция 4. Алгоритмы оптимизации
Если вы читали книгу последовательно, до этого момента вы уже использовали ряд расширенных алгоритмов оптимизации для обучения моделей глубокого обучения. Это были инструменты, которые позволили нам продолжить обновление параметров модели и минимизировать значение функции потерь, оцененной на обучающем наборе. В самом деле, любой, кто доволен тем, что рассматривает оптимизацию как средство «черного ящика» для минимизации целевых функций в простой настройке, вполне может удовлетвориться знанием того, что существует множество заклинаний для такой процедуры (с такими именами, как «Адам», «НАГ», или «SGD»).
Однако, чтобы преуспеть, необходимы более глубокие знания. Алгоритмы оптимизации важны для глубокого обучения. С одной стороны, обучение сложной модели глубокого обучения может занять часы, дни или даже недели. Производительность алгоритма оптимизации напрямую влияет на эффективность обучения модели. С другой стороны, понимание принципов различных алгоритмов оптимизации и роли их параметров позволит нам целенаправленно настраивать гиперпараметры для повышения производительности моделей глубокого обучения.
В этой главе мы подробно исследуем распространенные алгоритмы оптимизации глубокого обучения. Практически все проблемы оптимизации, возникающие при глубоком обучении, невыпуклые. Тем не менее, разработка и анализ алгоритмов в контексте выпуклых задач оказались очень поучительными. По этой причине этот раздел включает в себя учебник по выпуклой оптимизации и доказательство очень простого алгоритма стохастического градиентного спуска для выпуклой целевой функции.
4.1. Оптимизация и глубокое обучение
В этом разделе мы обсудим взаимосвязь между оптимизацией и глубоким обучением, а также проблемы использования оптимизации в глубоком обучении. Для задачи глубокого обучения мы обычно сначала определяем функцию потерь. Когда у нас есть функция потерь, мы можем использовать алгоритм оптимизации, пытаясь минимизировать потери. В оптимизации функцию потерь часто называют целевой функцией задачи оптимизации. По традиции и соглашению большинство алгоритмов оптимизации связано с минимизацией. Если нам когда-нибудь понадобится максимизировать цель, есть простое решение: просто переверните знак цели.

4.1.1. Оптимизация и оценка
Хотя оптимизация позволяет минимизировать функцию потерь для глубокого обучения, по сути, цели оптимизации и глубокого обучения принципиально разные. Первый, в первую очередь связаны с минимизацией цели, в то время как последняя связана с поиском подходящей модели с учетом конечного количества данных. В Разделе 4.4 мы подробно обсудили разницу между этими двумя целями. Например, ошибка обучения и ошибка обобщения обычно различаются: поскольку целевая функция алгоритма оптимизации обычно представляет собой функцию потерь, основанную на наборе обучающих данных, целью оптимизации является уменьшение ошибки обучения. Однако цель статистического вывода (и, следовательно, глубокого обучения) - уменьшить ошибку обобщения. Чтобы выполнить последнее, нам нужно обратить внимание на переоснащение в дополнение к использованию алгоритма оптимизации для уменьшения ошибки обучения. Начнем с импорта нескольких библиотек для этой главы.
%matplotlib inline
from d2l import mxnet as d2l
from mpl_toolkits import mplot3d
from mxnet import np, npx
npx.set_np()

Затем мы определяем две функции: ожидаемую функцию f и эмпирическую функцию g, чтобы проиллюстрировать эту проблему. Здесь g менее гладкая, чем f, поскольку у нас есть только конечный объем данных.
def f(x): return x * np.cos(np.pi * x)
def g(x): return f(x) + 0.2 * np.cos(5 * np.pi * x)

График ниже показывает, что минимум ошибки обучения может быть в другом месте, чем минимум ожидаемой ошибки (или ошибки теста).
def annotate(text, xy, xytext): #@save
d2l.plt.gca().annotate(text, xy=xy, xytext=xytext,
arrowprops=dict(arrowstyle='->'))
x = np.arange(0.5, 1.5, 0.01)
d2l.set_figsize((4.5, 2.5))
d2l.plot(x, [f(x), g(x)], 'x', 'risk')
annotate('empirical risk', (1.0, -1.2), (0.5, -1.1))
annotate('expected risk', (1.1, -1.05), (0.95, -0.5))



4.1.2. Проблемы оптимизации при глубоком обучении
В этой главе мы сосредоточимся конкретно на эффективности алгоритма оптимизации при минимизации целевой функции, а не на ошибке обобщения модели. В разделе 3.1 мы различали аналитические и численные решения в задачах оптимизации.
В глубоком обучении большинство целевых функций сложны и не имеют аналитических решений.
Вместо этого мы должны использовать алгоритмы численной оптимизации. Все приведенные ниже алгоритмы оптимизации попадают в эту категорию.
Оптимизация глубокого обучения сопряжена с множеством проблем. Некоторые из наиболее неприятных - это локальные минимумы, седловые точки и исчезающие градиенты. Давайте посмотрим на некоторые из них.
4.1.2.1. Локальные минимумы
Для целевой функции f (x), если значение f (x) в x меньше, чем значения f (x) в любых других точках в окрестности x, то f (x) может быть локальным минимумом. Если значение f (x) в точке x является минимумом целевой функции по всей области, то f (x) является глобальным минимумом.
Например, рассматривая функцию
f (x) = x · cos (πx) для - 1.0 ≤ x ≤ 2.0,                                          (4.1.1)
мы можем аппроксимировать локальный минимум и глобальный минимум этой функции.
x = np.arange(-1.0, 2.0, 0.01)
d2l.plot(x, [f(x), ], 'x', 'f(x)')
annotate('local minimum', (-0.3, -0.25), (-0.77, -1.0))
annotate('global minimum', (1.1, -0.95), (0.6, 0.8))

Целевая функция моделей глубокого обучения обычно имеет много локальных оптимумов. Когда численное решение задачи оптимизации близко к локальному оптимуму, численное решение, полученное на последней итерации, может минимизировать целевую функцию только локально, а не глобально, когда градиент решения целевой функции приближается или становится нулевым. Лишь некоторый шум может выбить параметр из локального минимума. Фактически, это одно из полезных свойств стохастического градиентного спуска, когда естественное изменение градиентов в мини-пакетах способно сместить параметры из локальных минимумов.
4.1.2.2. Седловые точки
Помимо локальных минимумов, седловые точки являются еще одной причиной исчезновения градиентов. Седловая точка1) - это любое место, где все градиенты функции обращаются в нуль, но которое не является ни глобальным, ни локальным минимумом. Рассмотрим функцию f (x) = x3. Его первая и вторая производные обращаются в нуль при x = 0.
Оптимизация может остановиться на этом этапе, даже если это не минимум.
x = np.arange(-2.0, 2.0, 0.01)
d2l.plot(x, [x**3], 'x', 'f(x)')
annotate('saddle point', (0, -0.2), (-0.52, -5.0))

Седловые точки в более высоких измерениях еще более коварны, как показывает пример ниже. Рассмотрим функцию f (x, y) = x2 - y2. Его седловая точка находится в точке (0, 0). Это максимум по y и минимум по x. Более того, он выглядит как седло, отсюда это математическое свойство и получило такое название.
x, y = np.meshgrid(np.linspace(-1.0, 1.0, 101), np.linspace(-1.0, 1.0, 101))
z = x**2 - y**2
ax = d2l.plt.figure().add_subplot(111, projection='3d')
ax.plot_wireframe(x, y, z, **{'rstride': 10, 'cstride': 10})
ax.plot([0], [0], [0], 'rx')
ticks = [-1, 0, 1]
d2l.plt.xticks(ticks)
d2l.plt.yticks(ticks)
ax.set_zticks(ticks)
d2l.plt.xlabel('x')
d2l.plt.ylabel('y');

Мы предполагаем, что вход функции - это k-мерный вектор, а ее выход - скаляр, поэтому ее матрица Гессе будет иметь k собственных значений (см. Раздел 4.1). Решением функции может быть локальный минимум, локальный максимум или седловая точка в позиции, где градиент функции равен нулю:
· Когда все собственные значения матрицы Гессе функции в позиции с нулевым градиентом положительны, у нас есть локальный минимум для функции.

1) https://en.wikipedia.org/wiki/Saddle_point

· Когда все собственные значения матрицы Гессе функции в позиции с нулевым градиентом отрицательны, у нас есть локальный максимум для функции.
· Когда собственные значения матрицы Гессе функции в позиции с нулевым градиентом отрицательны и положительны по разным направлениям, у нас есть седловая точка для этой функции.
Для задач большой размерности вероятность того, что, хотя бы некоторые из собственных значений отрицательны, довольно высока. Это делает седловые точки более вероятными, чем локальные минимумы. Мы обсудим некоторые исключения из этой ситуации в следующем разделе при введении выпуклости. Короче говоря, выпуклые функции - это те, у которых собственные значения гессиана никогда не бывают отрицательными. К сожалению, большинство проблем глубокого обучения не попадают в эту категорию. Тем не менее, это отличный инструмент для изучения алгоритмов оптимизации.
4.1.2.3. Исчезающие градиенты
Вероятно, самая коварная проблема - это исчезающие градиенты. Например, предположим, что мы хотим минимизировать функцию f (x) = tanh (x), и мы начали с x = 4.
Как видим, градиент f близок к нулю. Более конкретно
f ′ (x) = 1 - tanh2 (x) и, следовательно, f ′ (4) = 0,0013.
Следовательно, оптимизация надолго застрянет, прежде чем мы добьемся прогресса.
Это оказалось одной из причин того, что обучение моделей глубокого обучения было довольно сложным до введения функции активации ReLU.
x = np.arange(-2.0, 5.0, 0.01)
d2l.plot(x, [np.tanh(x)], 'x', 'f(x)')
annotate('vanishing gradient', (4, 1), (2, 0.0))

Как мы видели, оптимизация для глубокого обучения полна проблем. К счастью, существует множество надежных алгоритмов, которые хорошо работают и просты в использовании даже для новичков. Более того, совсем не обязательно искать лучшее решение. Локальные оптимумы или даже их приближенные решения по-прежнему очень полезны.


Резюме
· Сведение к минимуму ошибки обучения не гарантирует, что мы найдем лучший набор параметров для минимизации ожидаемой ошибки.
· Проблемы оптимизации могут иметь множество локальных минимумов.
· Проблема может иметь еще больше седловых точек, так как обычно проблемы не являются выпуклыми.
· Исчезающие градиенты могут привести к остановке оптимизации. Часто помогает повторная параметризация проблемы. Хорошая инициализация параметров тоже может быть полезной.
Упражнения
1) Рассмотрим простой многослойный персептрон с одним скрытым слоем, скажем, d измерений в скрытом слое и одним выходом. Покажите, что для любого локального минимума есть как минимум d! эквивалентных решений, которые ведут себя одинаково.
2) Предположим, что у нас есть симметричная случайная матрица M, в которой элементы Mij = Mji взяты из некоторого распределения вероятностей pij. Кроме того, предположим, что pij (x) = pij (−x), т. е. что распределение симметрично (см., например, (Wigner, 1958) подробности).
· Докажите, что распределение по собственным значениям также симметрично. То есть для любого собственного вектора v вероятность того, что соответствующее собственное значение λ удовлетворяет условию P (λ> 0) = P (λ <0).
· Почему из сказанного выше не следует, что P (λ> 0) = 0,5?
3. Какие еще проблемы, связанные с оптимизацией глубокого обучения, вы можете придумать?
4. Предположим, вы хотите сбалансировать (настоящий) мяч на (настоящем) седле.
· Почему это сложно?
· Можете ли вы использовать этот эффект также для алгоритмов оптимизации?
Обсуждение (см. https://discuss.d2l.ai/t/349)
4.2. Выпуклость
Выпуклость играет жизненно важную роль при разработке алгоритмов оптимизации. Во многом это связано с тем, что в этом контексте намного проще анализировать и тестировать алгоритмы. Другими словами, если алгоритм плохо работает даже в выпуклой настройке, в противном случае мы не должны надеяться на хорошие результаты.
Более того, даже если задачи оптимизации в глубоком обучении обычно невыпуклые, они часто проявляют некоторые свойства выпуклых задач вблизи локальных минимумов. Это может привести к появлению новых интересных вариантов оптимизации, таких как в работе (Измайлов и др., 2018).
4.2.1. Основы
Начнем с основ.
4.2.1.1. Множества
Множества - основа выпуклости. Проще говоря, множество X в векторном пространстве является выпуклым, если для любых a, b ∈ X отрезок прямой, соединяющий a и b, также находится в X. С математической точки зрения это означает, что для всех λ ∈ [0, 1] имеем
λ · a + (1 - λ) · b ∈ X, если a, b ∈ X.                                                (4.2.1)
Звучит немного абстрактно. Рассмотрим картинку Рис. 4.2.1. Первый набор не является выпуклым, так как в нем отсутствуют отрезки прямых. В двух других наборах такой проблемы нет.

Рис. 4.2.1: Три формы, левая невыпуклая, остальные выпуклые
Сами по себе определения не особенно полезны, если вы не можете что-то с ними сделать. В этом случае мы можем смотреть на объединения и пересечения, как показано на рис. 4.2.2. Предположим, что X и Y - выпуклые множества. Тогда X ∩ Y также выпукло. Чтобы убедиться в этом, рассмотрим любые a, b ∈ X ∩ Y. Поскольку X и Y выпуклые, отрезки, соединяющие a и b, содержатся как в X, так и в Y. Учитывая это, они также должны содержаться в X ∩ Y, что доказывает нашу первую теорему.

Рис. 4.2.2: Пересечение двух выпуклых множеств выпукло
Мы можем усилить этот результат без особых усилий: для заданных выпуклых множеств Xi их пересечение ∩iXi выпукло. Чтобы убедиться, что обратное неверно, рассмотрим два непересекающихся множества X ∩Y = ∅. Теперь выберем a ∈ X и b ∈ Y. Отрезок в: numref: fig_nonconvex, соединяющий a и b, должен содержать некоторую часть, которая не находится ни в X, ни в Y, поскольку мы предположили, что X ∩ Y = ∅. Следовательно, отрезок прямой тоже не принадлежит X ∪ Y, тем самым доказывая, что в общем случае объединения выпуклых множеств не обязательно должны быть выпуклыми.

Рис. 4.2.3: Объединение двух выпуклых множеств не обязательно должно быть выпуклым
Обычно проблемы глубокого обучения определяются в выпуклых областях. Например, Х- выпуклое множество (в конце концов, линия между любыми двумя точками в Х остается в Х). В некоторых случаях мы работаем с переменными ограниченной длины, например, с шарами радиуса r, как определено формулами {x | x ∈ Rd и ∥x∥2 ≤ r}.
4.2.1.2. Функции
Теперь, когда у нас есть выпуклые множества, мы можем ввести выпуклые функции f. Для выпуклого множества X определенная на нем функция f: X → R является выпуклой, если для всех x, x ′ ∈ X и для всех λ ∈ [0, 1] выполняется
λf (x) + (1 - λ) f (x ′) ≥ f (λx + (1 - λ) x ′).                                    (4.2.2)
Чтобы проиллюстрировать это, давайте построим несколько функций и проверим, какие из них удовлетворяют требованиям. Нам нужно импортировать несколько библиотек.
%matplotlib inline
from d2l import mxnet as d2l
from mpl_toolkits import mplot3d
from mxnet import np, npx
npx.set_np()

Определим несколько функций, как выпуклых, так и невыпуклых.
f = lambda x: 0.5 * x**2 # Convex
g = lambda x: np.cos(np.pi * x) # Nonconvex
h = lambda x: np.exp(0.5 * x) # Convex
x, segment = np.arange(-2, 2, 0.01), np.array([-1.5, 1])
d2l.use_svg_display()
_, axes = d2l.plt.subplots(1, 3, figsize=(9, 3))
for ax, func in zip(axes, [f, g, h]):
d2l.plot([x, segment], [func(x), func(segment)], axes=ax)

Как и ожидалось, косинусная функция невыпуклая, а парабола и экспоненциальная функция выпуклые. Обратите внимание, что требование, чтобы X было выпуклым множеством, необходимо для того, чтобы условие имело смысл.
В противном случае значение f (λx + (1 - λ) x′) может быть не определено, так как точка λx + (1 - λ) x′ не находится в области определения функции. Выпуклые функции обладают рядом желаемых свойств.
4.2.1.3. Неравенство Иенсена
Один из самых полезных инструментов - неравенство Иенсена. Оно сводится к обобщению определения выпуклости:
∑i αif (xi) ≥ f(∑i αixi) и Ex [f (x)] ≥ f (Ex [x]),                                    (4.2.3)
где αi - неотрицательные действительные числа, такие что ∑i αi = 1. Другими словами, математическое ожидание выпуклой функции больше, чем выпуклая функция математического ожидания. Чтобы доказать первое неравенство, мы неоднократно применяем определение выпуклости к одному члену в сумме за раз. Ожидание можно доказать, взяв предел по конечным отрезкам.
Одно из общих применений неравенства Иенсена - это логарифмическая вероятность частично наблюдаемых случайных величин. То есть мы используем
Ey∼P (y) [- log P (x | y)] ≥ - log P (x).                                                          (4.2.4)
Это следует из того, что ∫ P (y) P (x | y) dy = P (x). Оно используется в вариационных методах. Здесь y обычно является ненаблюдаемой случайной величиной, P (y) - лучшее предположение о том, как она может быть распределена, а P (x) - это распределение с интегрированным y. Например, при кластеризации y может быть метками кластера, а P (x | y) - генеративной моделью при применении меток кластера.
4.2.2. Свойства
Выпуклые функции обладают несколькими полезными свойствами. Опишем их следующим образом.
4.2.2.1. Нет локальных минимумов
В частности, выпуклые функции не имеют локальных минимумов. Допустим противное и докажем, что это неверно. Если x ∈ X - локальный минимум, существует некоторая окрестность x, для которой f (x) наименьшее значение. Поскольку x является лишь локальным минимумом, должен быть другой x′ ∈ X, для которого f (x ′) <f (x). Однако в силу выпуклости значения функции на всей прямой λx + (1 - λ) x′ должны быть меньше f (x), поскольку при λ ∈ [0, 1)
f (x)> λf (x) + (1 - λ) f (x′) ≥ f (λx + (1 - λ) x′).                            (4.2.5)
Это противоречит предположению, что f (x) - локальный минимум. Например, функция f (x) = (x + 1) (x - 1)2 имеет локальный минимум для x = 1. Однако это не глобальный минимум.
f = lambda x: (x-1)**2 * (x+1)
d2l.set_figsize()
d2l.plot([x, segment], [f(x), f(segment)], 'x', 'f(x)')

То, что выпуклые функции не имеют локальных минимумов, очень удобно. Это означает, что, если мы минимизируем функции, мы не сможем «застрять». Однако обратите внимание, что это не означает, что не может быть более одного глобального минимума или что он может даже существовать. Например, функция f (x) = max (| x | −1, 0) достигает своего минимального значения на интервале [−1, 1]. И наоборот, функция f (x) = exp(-x) не достигает минимального значения на R. При x → −∞ она асимптотически стремится к 0, однако не существует x, для которого f (x) = 0.
4.2.2.2. Выпуклые функции и множества
Выпуклые функции определяют выпуклые множества как нижеследующие. Они определены как
Sb: = {x | x ∈ X и f (x) ≤ b}.                                                      (4.2.6)
Такие множества выпуклые. Давайте быстро это докажем. Помните, что для любых x, x ′ ∈ Sb нам нужно показать, что λx + (1 - λ) x′ ∈ Sb, пока λ ∈ [0, 1]. Но это непосредственно следует из определения выпуклости, поскольку 
f (λx + (1 - λ) x′) ≤ λf (x) + (1 - λ) f (x′) ≤ b.
Посмотрите на функцию f (x, y) = 0.5x2 + cos (2πy) ниже. Она явно невыпуклая. Соответственно, множества уровней невыпуклые. Фактически, они обычно состоят из непересекающихся множеств.
x, y = np.meshgrid(np.linspace(-1.0, 1.0, 101), np.linspace(-1.0, 1.0, 101))
z = x**2 + 0.5 * np.cos(2 * np.pi * y)
# Plot the 3D surface
d2l.set_figsize((6, 4))
ax = d2l.plt.figure().add_subplot(111, projection='3d')
ax.plot_wireframe(x, y, z, **{'rstride': 10, 'cstride': 10})
ax.contour(x, y, z, offset=-1)
ax.set_zlim(-1, 1.5)
# Adjust labels
for func in [d2l.plt.xticks, d2l.plt.yticks, ax.set_zticks]:
func([-1, 0, 1])
/var/lib/jenkins/miniconda3/envs/d2l-en-release-1/lib/python3.7/site-packages/numpy/core/,→_asarray.py:136: VisibleDeprecationWarning: Creating an ndarray from ragged nested␣ ,→sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths␣,→or shapes) is deprecated. If you meant to do this, you must specify 
'dtype=object' when␣,→creating the ndarray
return array(a, dtype, copy=False, order=order, subok=True)

4.2.2.3. Производные и выпуклость
Когда существует вторая производная функции, очень легко проверить ее выпуклость. Все, что нам нужно сделать, это проверить, ∂2xf (x) ⪰ 0, т.е. все ли его собственные значения неотрицательны. Например, функция f (x) = 1/2 ∥x∥22 является выпуклой, так как ∂2xf(x) = 1, т.е. ее производная является единичной матрицей.
Первое, что нужно понять, это то, что нам нужно только доказать это свойство для одномерных функций.
В конце концов, мы всегда можем определить некоторую функцию g (z) = f(x + z · v). Эта функция имеет первую и вторую производные g ′ = (∂xf)⊤v и g′′ = v⊤ (∂2xf)v соответственно. В частности, g ′′ ≥ 0 для всех v, если гессиан функции f положительно полуопределен, т.е. когда все его собственные значения больше нуля. Отсюда вернемся к скалярному случаю.
Чтобы увидеть, что f ′′ (x) ≥ 0 для выпуклых функций, воспользуемся тем, что
½ f (х + ϵ) + ½ f (x - ϵ) ≥ f((х + ϵ)/2 + (х - ϵ)/2) = f (x).                               (4.2.7)
Поскольку вторая производная дается пределом по конечным разностям, следует, что
f′′ (x) = limϵ → 0 (f (х + ϵ) + f(х - ϵ) - 2f (х))/ϵ2 ≥ 0.                                        (4.2.8)
Чтобы убедиться в обратном, мы используем тот факт, что из f ′′ ≥ 0 следует, что f ′ - монотонно возрастающая функция. Пусть a <x <b - три точки в R. Воспользуемся теоремой о среднем значении, чтобы выразить
f (x) - f (a) = (x - a) f ′ (α) для некоторого α ∈ [a, x] и 
f (b) - f (x) = (b - x) f ′ (β) для некоторого β ∈ [x, b].                                    (4.2.9)

По монотонности f ′ (β) ≥ f ′ (α), поэтому
f (b) - f (a) = f (b) - f (x) + f (x) - f (a) = 
(b - x) f ′ (β) + (x - a) f ′ (α ) ≥ (b - a) f (α).                                                     (4.2.10)

Из геометрии следует, что f (x) находится ниже линии, соединяющей f (a) и f(b), что доказывает выпуклость.
Мы опускаем более формальный вывод в пользу графика ниже.
f = lambda x: 0.5 * x**2
x = np.arange(-2, 2, 0.01)
axb, ab = np.array([-1.5, -0.5, 1]), np.array([-1.5, 1])
d2l.set_figsize()
d2l.plot([x, axb, ab], [f(x) for x in [x, axb, ab]], 'x', 'f(x)')
d2l.annotate('a', (-1.5, f(-1.5)), (-1.5, 1.5))
d2l.annotate('b', (1, f(1)), (1, 1.5))
d2l.annotate('x', (-0.5, f(-0.5)), (-1.5, f(-0.5)))

4.2.3. Ограничения
Одним из хороших свойств выпуклой оптимизации является то, что она позволяет нам эффективно обрабатывать ограничения. То есть позволяет решать задачи вида:
минимизироватьx f (x) при условии ci (x) ≤ 0 для всех i ∈ {1,. . . , N}.      (4.2.11)
Здесь f - цель, а функции ci - функции ограничений. Чтобы увидеть, что это на самом деле, рассмотрим случай, когда c1 (x) = ∥x∥2 −1. В этом случае параметры x ограничены единичным шаром. Если второе ограничение c2 (x) = v⊤x + b, то это соответствует всем x, лежащим в полупространстве. Удовлетворение обоих ограничений одновременно означает выбор кусочка шара в качестве набора ограничений.
4.2.3.1. Функция Лагранжа
В общем, решить задачу ограниченной оптимизации сложно. Один из способов решения этой проблемы исходит из физики с довольно простой интуицией. Представьте себе мяч внутри коробки. Мяч катится в самое нижнее место, и силы тяжести уравновешиваются силами, которые стороны коробки могут приложить к мячу. Короче говоря, градиент целевой функции (т. е. гравитации) будет компенсирован градиентом функции ограничения (необходимо оставаться внутри поля в силу того, что стены «отталкиваются»). Обратите внимание, что любое неактивное ограничение (т.е. мяч не касается стены) не сможет оказать на мяч силу.
Пропустив вывод функции Лагранжа L (см., например, книгу Бойда и Ванденберга для подробностей (Boyd & Vandenberghe, 2004)), приведенное выше рассуждение может быть выражено через следующую задачу оптимизации седловой точки:
L (x, α) = f (x) + ∑i αici (x), где αi ≥ 0.                                                           (4.2.12)
Здесь переменные αi представляют собой так называемые множители Лагранжа, которые обеспечивают правильное выполнение ограничения. Они выбираются достаточно большими, чтобы гарантировать, что ci (x) ≤ 0 для всех i. Например, для любого x, для которого ci (x) < 0, естественно, мы в конечном итоге выберем αi = 0. Более того, это задача оптимизации седловой точки, в которой нужно максимизировать L относительно α и одновременно минимизировать его относительно x. Существует большое количество литературы, объясняющей, как получить функцию L (x, α). Для наших целей достаточно знать, что точка перевала L - это то место, где исходная задача оптимизации с ограничениями решается оптимальным образом.
4.2.3.2. Штрафы
Одним из способов решения задач оптимизации с ограничениями, по крайней мере, приближенно, является адаптация функции Лагранжа L. Вместо того, чтобы удовлетворять ci (x) ≤ 0, мы просто добавляем αici (x) к целевой функции f (x). Это гарантирует, что ограничения не будут слишком сильно нарушены.
Фактически, мы использовали этот трюк все время. Рассмотрим уменьшение веса в разделе 4.5. В нем мы добавляем
λ/2 ∥w∥2
к целевой функции, чтобы гарантировать, что w не станет слишком большим. Используя точку зрения ограниченной оптимизации, мы видим, что это гарантирует, что ∥w∥2 - r2 ≤ 0 для некоторого радиуса r.
Регулировка значения λ позволяет нам изменять размер w.
В общем, добавление штрафов - хороший способ обеспечить приблизительное выполнение ограничений. На практике это оказывается гораздо более надежным, чем точное удовлетворение. Более того, для невыпуклых задач многие свойства, делающие точный подход столь привлекательным в выпуклом случае (например, оптимальность), больше не выполняются.
4.2.3.3. Прогнозы
Альтернативной стратегией удовлетворения ограничений являются прогнозы. Опять же, мы сталкивались с ними раньше, например, когда имели дело с обрезкой градиента в Разделе 2.5. Там мы убедились, что градиент имеет длину, ограниченную c через 
g ← g · min (1, c / ∥g∥).                                                                             (4.2.13)
Оказывается, это проекция g на шар радиуса c. В более общем смысле, проекция на (выпуклое) множество X определяется как
ProjX (x) = argminх′ ∈X ∥x - x′∥2.                                                                 (4.2.14)
Таким образом, это ближайшая точка в X к x. Звучит немного абстрактно. Рис. 4.2.4 объясняет это несколько яснее. В нем у нас есть два выпуклых множества, круг и ромб. Точки внутри набора (желтые) остаются без изменений. Точки за пределами набора (черные) сопоставляются с ближайшей точкой внутри набора (красные). В то время как для шариков L2 это оставляет направление неизменным, в общем случае этого не должно быть, как можно видеть в случае ромба.
Одно из применений выпуклых проекций - вычисление разреженных векторов веса. В этом случае мы проецируем w на шар L1 (последний является обобщенной версией ромба на рисунке выше).


Резюме
В контексте глубокого обучения основная цель выпуклых функций - мотивировать алгоритмы оптимизации и помочь нам понять их в деталях. Далее мы увидим, как можно соответственно получить градиентный спуск и стохастический градиентный спуск.
· Пересечения выпуклых множеств выпуклые. Объединение - нет.
· Математическое ожидание выпуклой функции больше, чем выпуклая функция математического ожидания (неравенство Йенсена).
· Дважды дифференцируемая функция является выпуклой тогда и только тогда, когда ее вторая производная имеет только неотрицательные собственные значения.
· Выпуклые ограничения могут быть добавлены с помощью функции Лагранжа. На практике просто добавьте их со штрафом к целевой функции.
· Проекции сопоставляются с точками в (выпуклом) множестве, ближайшими к исходной точке.
Упражнения
1) Предположим, что мы хотим проверить выпуклость набора, проведя все линии между точками внутри набора и проверив, содержащими эти линии.
· Докажите, что достаточно проверить только точки на границе.
· Докажите, что достаточно проверить только вершины множества.
2) Обозначим через Bp [r]: = {x | x ∈ Rd и ∥x∥p ≤ r} шар радиуса r с помощью p-нормы. Докажите, что Bp [r] выпукло для всех p ≥ 1.
3) Заданные выпуклые функции f и g показывают, что max (f, g) также выпукла. Докажите, что min (f, g) невыпукло.
4) Докажите, что нормализация функции softmax выпуклая. Более конкретно докажите выпуклость f (x) = log(∑i exp (xi)).
5) Докажите, что линейные подпространства - это выпуклые множества, т. е. X = {x | Wx = b}.
6) Докажите, что в случае линейных подпространств с b = 0 проекцию ProjX можно записать как Mx для некоторой матрицы M.
7) Покажите, что для выпуклой дважды дифференцируемой функции f можно записать f (x + ϵ) = f (x) + ϵf ′ (x) +1/2 ϵ 2f ′ ′ (x + ξ) для некоторого ξ ∈ [0, ϵ].
8) Для вектора w ∈ Rd с ∥w∥1> 1 вычислить проекцию на единичный шар ℓ1.
· В качестве промежуточного шага запишите штрафную цель ∥w − w′∥22 + λ∥w′∥1 и вычислите решение для данного λ> 0.
· Сможете ли вы найти «правильное» значение λ без большого количества проб и ошибок?
9. Для выпуклого множества X и двух векторов x и y докажите, что проекции никогда не увеличивают расстояния, т.е. ∥x - y∥ ≥ ∥ProjX (x) - ProjX (y) ∥.
Обсуждения (см. https://discuss.d2l.ai/t/350)
4.3. Градиентный спуск
В этом разделе мы собираемся представить основные концепции, лежащие в основе градиентного спуска. Оно кратко по необходимости. См., например, (Boyd & Vandenberghe, 2004) более подробное введение в выпуклую оптимизацию. Хотя последний редко используется непосредственно в глубоком обучении, понимание градиентного спуска является ключом к пониманию алгоритмов стохастического градиентного спуска. Например, проблема оптимизации может отличаться из-за слишком большой скорости обучения. Это явление уже можно увидеть при градиентном спуске. Точно так же предварительное ограничивание является распространенным методом градиентного спуска и переносится на более сложные алгоритмы. Начнем с простого частного случая.
4.3.1. Градиентный спуск в одном измерении
Градиентный спуск в одном измерении - отличный пример, объясняющий, почему алгоритм градиентного спуска может уменьшить значение целевой функции. Рассмотрим некоторую непрерывно дифференцируемую вещественную функцию f: R → R. Используя разложение Тейлора (раздел 3.3), получаем, что
f (x + ϵ) = f (x) + ϵf ′ (x) + O (ϵ2).                                                                  (4.3.1)
То есть в первом приближении f (x + ϵ) задается значением функции f (x) и первой производной f '(x) в точке x. Есть основания предполагать, что при малых шагах, движущихся в направлении отрицательного градиента, будет приводить к уменьшению f. Для простоты мы выбираем фиксированный размер шага η> 0 и выбираем ϵ = −ηf ′ (x). Подключив это к приведенному выше расширению Тейлора, мы получаем
f (x - ηf ′ (x)) = f (x) - ηf′2 (x) + O (η2f′2 (x)).                                                   (4.3.2)
Если производная f ′ (x) ̸ = 0 не обращается в нуль, мы добьемся прогресса, поскольку ηf′2 (x)> 0. Более того, мы всегда можем выбрать η достаточно малым, чтобы члены более высокого порядка перестали иметь значение. Отсюда мы приходим к
f (x - ηf ′ (x)) ⪅ f (x).                                                                                       (4.3.3)
Это означает, что если мы используем
x ← x - ηf ′ (x)                                                                                                 (4.3.4)
для итерации x значение функции f (x) может уменьшиться. Следовательно, при градиентном спуске мы сначала выбираем начальное значение x и константу η> 0, а затем используем их для непрерывного перебора x, пока не будет достигнуто условие остановки, например, когда величина градиента | f'(x) | достаточно мало или количество итераций достигло определенного значения.
Для простоты мы выбрали целевую функцию f (x) = x2, чтобы проиллюстрировать, как реализовать градиентный спуск. Хотя мы знаем, что x = 0 является решением для минимизации f (x), мы по-прежнему используем эту простую функцию, чтобы наблюдать, как изменяется x. Как всегда, мы начинаем с импорта всех необходимых модулей.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import np, npx
npx.set_np()
f = lambda x: x**2 # Objective function
gradf = lambda x: 2 * x # Its derivative

Затем мы используем x = 10 в качестве начального значения и принимаем η = 0,2. Используя градиентный спуск по x для итерации 10 раз, мы видим, что в конечном итоге значение x приближается к оптимальному решению.
def gd(eta):
x = 10.0
results = [x]
for i in range(10):
x -= eta * gradf(x)
results.append(float(x))
print('epoch 10, x:', x)
return results
res = gd(0.2)
epoch 10, x: 0.06046617599999997

Ход оптимизации по x можно изобразить следующим образом.
def show_trace(res):
n = max(abs(min(res)), abs(max(res)))
f_line = np.arange(-n, n, 0.01)
d2l.set_figsize()
d2l.plot([f_line, res], [[f(x) for x in f_line], [f(x) for x in res]],
'x', 'f(x)', fmts=['-', '-o'])
show_trace(res)

4.3.1.1. Скорость обучения
Скорость обучения η может быть установлена ​​разработчиком алгоритма. Если мы используем слишком маленькую скорость обучения, это приведет к очень медленному обновлению x, что потребует большего количества итераций для получения лучшего решения. Чтобы показать, что происходит в таком случае, рассмотрим прогресс в той же задаче оптимизации для η = 0,05.
Как видим, даже после 10 шагов мы все еще очень далеки от оптимального решения. 
show_trace(gd(0.05))
epoch 10, x: 3.4867844009999995

И наоборот, если мы используем слишком высокую скорость обучения, | ηf ′ (x) | может быть слишком большим для формулы разложения Тейлора первого порядка. То есть член O (η2f′2 (x)) в: eqref: gd-taylor может стать значимым. В этом случае мы не можем гарантировать, что итерация x сможет снизить значение f (x). Например, когда мы устанавливаем скорость обучения η = 1,1, x переходит оптимальное решение x = 0 и постепенно расходится. 
show_trace(gd(1.1)) 
epoch 10, x: 61.917364224000096

4.3.1.2. Локальные минимумы
Чтобы проиллюстрировать, что происходит с невыпуклыми функциями, рассмотрим случай f (x) = x · cos cx. Эта функция имеет бесконечно много локальных минимумов. В зависимости от нашего выбора скорости обучения и от того, насколько хорошо обусловлена ​​проблема, мы можем прийти к одному из многих решений.
Пример ниже показывает, как (нереально) высокая скорость обучения приведет к плохому локальному минимуму.
c = np.array(0.15 * np.pi)
f = lambda x: x * np.cos(c * x)
gradf = lambda x: np.cos(c * x) - c * x * np.sin(c * x)
show_trace(gd(2))
epoch 10, x: -1.5281651

4.3.2. Многомерный градиентный спуск
Теперь, когда у нас есть лучшее представление об одномерном случае, давайте рассмотрим ситуацию, когда x ∈ Rd. То есть целевая функция f: Rd → R переводит векторы в скаляры. Соответственно, его градиент тоже многомерный. Это вектор, состоящий из d частных производных:
∇f (x) = [∂f (x) / ∂x1, ∂f (x) / ∂x2,. . . , ∂f (x) / ∂xd]⊤.                                     (4.3.5)
Каждый элемент частной производной ∂f (x) / ∂xi в градиенте указывает скорость изменения f в точке x по отношению к входу xi. Как и раньше, в одномерном случае мы можем использовать соответствующее приближение Тейлора для многомерных функций, чтобы получить некоторое представление о том, что нам следует делать. В частности, мы имеем
f (х + ϵ) = f (х) + O (∥ϵ∥2).                                                                             (4.3.6)
Другими словами, до членов второго порядка по ϵ направление наискорейшего спуска задается отрицательным градиентом −∇f (x). Выбор подходящей скорости обучения η> 0 приводит к прототипу алгоритма градиентного спуска:
х ← х - η∇f (x).                                                                                              (4.3.7)
Чтобы увидеть, как алгоритм ведет себя на практике, построим целевую функцию f (x) = x21 + 2x22 с двумерным вектором x = [x1, x2]⊤ на входе и скаляром на выходе. Градиент задается формулой ∇f (x) = [2x1, 4x2]⊤. Мы будем наблюдать траекторию x путем градиентного спуска из начальной позиции [−5, −2]. Нам нужны еще две вспомогательные функции. Первый использует функцию обновления и применяет ее 20 раз к начальному значению. Второй помощник визуализирует траекторию x.
def train_2d(trainer, steps=20): #@save
"""Optimize a 2-dim objective function with a customized trainer."""
# s1 and s2 are internal state variables and will
# be used later in the chapter
x1, x2, s1, s2 = -5, -2, 0, 0
results = [(x1, x2)]
for i in range(steps):
x1, x2, s1, s2 = trainer(x1, x2, s1, s2)
results.append((x1, x2))
return results
def show_trace_2d(f, results): #@save
"""Show the trace of 2D variables during optimization."""
d2l.set_figsize()
d2l.plt.plot(*zip(*results), '-o', color='#ff7f0e')
x1, x2 = np.meshgrid(np.arange(-5.5, 1.0, 0.1),
np.arange(-3.0, 1.0, 0.1))
d2l.plt.contour(x1, x2, f(x1, x2), colors='#1f77b4')
d2l.plt.xlabel('x1')
d2l.plt.ylabel('x2')

Затем мы наблюдаем траекторию переменной оптимизации x для скорости обучения η = 0,1. Мы видим, что после 20 шагов значение x приближается к своему минимуму на [0, 0]. Прогресс довольно хорошо ведется, хотя и довольно медленно.
f = lambda x1, x2: x1 ** 2 + 2 * x2 ** 2 # Objective
gradf = lambda x1, x2: (2 * x1, 4 * x2) # Gradient
def gd(x1, x2, s1, s2):
(g1, g2) = gradf(x1, x2) # Compute gradient
return (x1 - eta * g1, x2 - eta * g2, 0, 0) # Update variables
eta = 0.1
show_trace_2d(f, train_2d(gd))


4.3.3. Адаптивные методы
Как мы могли видеть в Разделе 4.3.1, получить «правильную» скорость обучения η сложно. Если мы выберем его слишком маленьким, мы не добьемся прогресса. Если мы выберем его слишком большим, решение будет колебаться, а в худшем случае может даже расходиться. Что, если бы мы могли определять η автоматически или вообще избавиться от необходимости выбирать размер шага? В этом случае могут помочь методы второго порядка, которые смотрят не только на значение и градиент объекта, но и на его кривизну. Хотя эти методы не могут быть применены к глубокому обучению напрямую из-за вычислительных затрат, они дают полезную интуицию в отношении того, как разрабатывать расширенные алгоритмы оптимизации, которые имитируют многие из желательных свойств, описанных ниже алгоритмов.
4.3.3.1. Метод Ньютона
Рассматривая разложение Тейлора f, нет необходимости останавливаться после первого члена разложения. Фактически, мы можем записать это как
f (х + ϵ) = f (х) + ϵ⊤∇f (х) + ½ ϵ⊤∇∇⊤f (х) ϵ + O (∥ϵ∥3).                                          (4.3.8)
Чтобы избежать громоздких обозначений, определим Hf: = ∇∇⊤f (x) как гессиан функции f. Это матрица размера d × d. Для небольших d и простых задач Hf легко вычислить. С другой стороны, для глубоких сетей Hf может быть чрезмерно большим из-за стоимости хранения O (d2) записей. Более того, вычисление с помощью обратного распространения может оказаться слишком дорогостоящим, так как нам потребуется применить обратное распространение к графу вызовов обратного распространения. А пока давайте проигнорируем такие соображения и посмотрим, что алгоритм нам дает.
В конце концов, для минимума f выполняется равенство ∇f (x) = 0. Взяв производные от (4.3.8) по ϵ и пренебрегая членами более высокого порядка, мы приходим к
∇f (x) + Hf ϵ = 0 и, следовательно, ϵ = −Hf−1 ∇f (x).                                           (4.3.9)
То есть нам нужно инвертировать Hessian Hf как часть задачи оптимизации.
Для f (x) = ½ x2 имеем ∇f (x) = x и Hf = 1. Следовательно, для любого x получаем ϵ = −x. Другими словами, одного шага достаточно, чтобы идеально сходиться без какой-либо регулировки! Увы, нам здесь немного повезло, так как разложение Тейлора было точным. Посмотрим, что происходит с другими проблемами.
c = np.array(0.5)
f = lambda x: np.cosh(c * x) # Objective
gradf = lambda x: c * np.sinh(c * x) # Derivative
hessf = lambda x: c**2 * np.cosh(c * x) # Hessian
def newton(eta=1):
x = 10.0
results = [x]
for i in range(10):
x -= eta * gradf(x) / hessf(x)
results.append(float(x))
print('epoch 10, x:', x)
return results
show_trace(newton())

Теперь давайте посмотрим, что происходит, когда у нас есть невыпуклая функция, например, f (x) = x cos (cx). В конце концов, обратите внимание, что в методе Ньютона мы заканчиваем делением на гессиан. Это означает, что если вторая производная отрицательна, мы бы пошли в направлении увеличения f. Это фатальный недостаток алгоритма. Посмотрим, что происходит на практике.
c = np.array(0.15 * np.pi)
f = lambda x: x * np.cos(c * x)
gradf = lambda x: np.cos(c * x) - c * x * np.sin(c * x)
hessf = lambda x: - 2 * c * np.sin(c * x) - x * c**2 * np.cos(c * x)
show_trace(newton())
epoch 10, x: 26.834133

Алгоритм пошел совершенно неправильно. Как это исправить? Один из способов - «исправить» гессиан, взяв вместо этого его абсолютное значение. Другая стратегия - вернуть скорость обучения. Это похоже на поражение задуманного, но не совсем. Наличие информации второго порядка позволяет нам быть осторожными, когда кривизна велика, и делать более длинные шаги, когда цель плоская. Давайте посмотрим, как это работает с немного меньшей скоростью обучения, скажем, η = 0,5. Как видим, у нас довольно эффективный алгоритм.
show_trace(newton(0.5))
epoch 10, x: 7.26986

4.3.3.2. Анализ сходимости
Мы анализируем только скорость сходимости для выпуклых и трехкратно дифференцируемых f, где при минимуме x∗ вторая производная отлична от нуля, т. е. где f′′ (x∗)> 0. Многомерное доказательство является прямым расширением приведенных ниже рассуждений и опущен, так как это не очень помогает нам с точки зрения интуиции.
Обозначим через xk значение x на k-й итерации и пусть ek: = xk − x∗ - расстояние до оптимальной точки.
Используя разложение в ряд Тейлора, условие f ′ (x ∗) = 0 можно записать как
0 = f ′ (xk - ek) = f ′ (xk) - ekf ′′ (xk) + ½ e2kf ′′′ (ξk).                                        (4.3.10)
Это верно для некоторого ξk ∈ [xk - ek, xk]. Напомним, что у нас есть обновление 
xk + 1 = xk - f ′ (xk) / f ′′ (xk).
Разделив приведенное выше разложение на f ′′ (xk), получим
ek - f ′ (xk) / f ′′ (xk) = ½ e2kf ′′′ (ξk) / f ′′ (xk).                                                   (4.3.11)
Подстановка уравнений обновления приводит к следующей оценке ek + 1 ≤ e2kf′′′ (ξk) / f ′′ (xk). Следовательно, всякий раз, когда мы находимся в области ограниченного f ′′′ (ξk) / f ′′ (xk) ≤ c, мы имеем квадратично убывающую ошибку ek + 1 ≤ ce2k.
Кроме того, исследователи оптимизации называют это линейной сходимостью, тогда как такое условие, как ek + 1 ≤ αek, можно было бы назвать постоянной скоростью сходимости. Обратите внимание, что этот анализ сопровождается рядом предостережений: у нас действительно нет большой гарантии, когда мы достигнем области быстрой сходимости. Напротив, мы знаем только, что как только мы его достигнем, сходимость будет очень быстрой. Во-вторых, для этого требуется, чтобы f имела хорошее поведение вплоть до производных более высокого порядка. Все сводится к тому, чтобы f не обладала какими-либо «неожиданными» свойствами с точки зрения того, как она может изменять свои значения.
4.3.3.3. Предварительная подготовка
Совершенно неудивительно, что вычисление и хранение полного гессенского индекса очень дорого. Таким образом, желательно найти альтернативы. Один из способов улучшить ситуацию - избежать полного вычисления гессиана, а вычислить только диагональные элементы. Хотя это не так хорошо, как полный метод Ньютона, все же гораздо лучше, чем его не использовать. Более того, оценки для основных диагональных элементов - вот что движет некоторыми инновациями в алгоритмах оптимизации стохастического градиентного спуска. Это приводит к обновлению алгоритмов вида
x ← x − ηdiag(Hf )−1∇x.                                                                                              (4.3.12)

Чтобы понять, почему это может быть хорошей идеей, рассмотрим ситуацию, когда одна переменная обозначает высоту в миллиметрах, а другая - в километрах. Предполагая, что для обоих натуральный масштаб выражен в метрах, мы имеем ужасное несоответствие в параметризации. Использование предварительного кондиционирования устраняет это. Эффективное предварительное кондиционирование с градиентным спуском сводится к выбору различной скорости обучения для каждой координаты.
4.3.3.4. Градиентный спуск с поиском линии
Одна из ключевых проблем градиентного спуска заключалась в том, что мы могли не достичь цели или добиться недостаточного прогресса. Простое решение проблемы - использовать линейный поиск в сочетании с градиентным спуском. То есть мы используем направление, заданное ∇f (x), а затем выполняем двоичный поиск, какая длина шага η минимизирует f (x - η∇f (x)).
Этот алгоритм быстро сходится (анализ и доказательство см., например, (Boyd & Vandenberghe, 2004)). Однако для целей глубокого обучения это не совсем осуществимо, поскольку каждый шаг линейного поиска требует от нас оценки целевой функции для всего набора данных. Это слишком дорого.


Резюме
· Скорость обучения имеет значение. Слишком большой - и мы расходимся, слишком маленький - и мы не продвигаемся.
· Градиентный спуск может застрять в локальных минимумах.
· В больших размерах сложно настроить скорость обучения.
· Предварительная подготовка может помочь с настройкой шкалы.
· Метод Ньютона становится намного быстрее, если он начал правильно работать с выпуклыми задачами.
· Остерегайтесь использования метода Ньютона без каких-либо поправок на невыпуклые задачи.
Упражнения
1. Поэкспериментируйте с разными темпами обучения и целевыми функциями для градиентного спуска.
2. Реализуйте линейный поиск, чтобы минимизировать выпуклую функцию в интервале [a, b].
· Нужны ли вам производные для бинарного поиска, т.е. чтобы решить, выбрать ли [a, (a + b) / 2] или [(a + b) / 2, b]?
· Насколько высока скорость сходимости алгоритма?
· Реализуйте алгоритм и примените его к минимизации log (exp (x) + exp (−2 ∗ x - 3)).
3. Разработайте целевую функцию, определенную на R2, где градиентный спуск чрезвычайно медленный. Подсказка: масштабируйте разные координаты по-разному.
4. Реализуйте облегченную версию метода Ньютона, используя предварительное кондиционирование:
· Используйте диагональный гессиан в качестве предварительного кондиционера.
· Используйте абсолютные значения, а не фактические (возможно, подписанные) значения.
· Примените это к проблеме выше.
5. Примените описанный выше алгоритм к ряду целевых функций (выпуклых или нет). Что произойдет, если повернуть координаты на 45 градусов?
Обсуждения (см. https://discuss.d2l.ai/t/351)
4.4. Стохастический градиентный спуск
В этом разделе мы собираемся ввести основные принципы стохастического градиентного спуска.
%matplotlib inline
from d2l import mxnet as d2l
import math
from mxnet import np, npx
npx.set_np()

4.4.1. Обновления стохастического градиента
В глубоком обучении целевая функция обычно представляет собой среднее значение функций потерь для каждого примера в наборе обучающих данных. Мы предполагаем, что fi (x) является функцией потерь обучающего набора данных с n примерами, индексом i и вектором параметров x, тогда у нас есть целевая функция
f (x) = 1/n ∑ni = 1 fi (х).                                                                                          (4.4.1)
Градиент целевой функции в точке x вычисляется как
∇f (x) = 1/n ∑ni = 1 ∇fi (x).                                                                                     (4.4.2)
Если используется градиентный спуск, стоимость вычислений для каждой итерации независимой переменной составляет O (n), которая линейно растет с n. Следовательно, когда набор данных для обучения модели велик, стоимость градиентного спуска для каждой итерации будет очень высокой.
Стохастический градиентный спуск (SGD) снижает вычислительные затраты на каждой итерации. На каждой итерации стохастического градиентного спуска мы равномерно выбираем индекс i ∈ {1,. . . , n} для случайных точек данных и вычисляем градиент ∇fi (x) для обновления x:
х ← х - η∇fi (x).                                                                                                   (4.4.3)
Здесь η - скорость обучения. Мы видим, что стоимость вычислений для каждой итерации падает с O (n) градиентного спуска до константы O (1). Следует отметить, что стохастический градиент ∇fi (x) - это несмещенная оценка градиента ∇f (x).
Ei∇fi (x) = 1/n ∑ni = 1∇fi (x) = ∇f (x).                                                                   (4.4.4)
Это означает, что в среднем стохастический градиент является хорошей оценкой градиента.
Теперь мы сравним его с градиентным спуском, добавив случайный шум со средним значением 0 и дисперсией 1 к градиенту для имитации SGD.
f = lambda x1, x2: x1 ** 2 + 2 * x2 ** 2 # Objective
gradf = lambda x1, x2: (2 * x1, 4 * x2) # Gradient
def sgd(x1, x2, s1, s2):
global lr # Learning rate scheduler
(g1, g2) = gradf (x1, x2)
# Имитировать шумный градиент
g1 + = np.random.normal (0,0, 1, (1,))
g2 + = np.random.normal (0,0, 1, (1,))
eta_t = eta * lr () # Скорость обучения в момент t
return (x1 - eta_t * g1, x2 - eta_t * g2, 0, 0) # Обновить переменные
eta = 0,1
lr = (lambda: 1) # Постоянная скорость обучения
d2l.show_trace_2d (f, d2l.train_2d (sgd, шаги = 50))
/var/lib/jenkins/miniconda3/envs/d2l-en-release-1/lib/python3.7/site-packages/numpy/core/
, → _asarray.py: 136: VisibleDeprecationWarning: Создание ndarray из рваных вложенных
, → последовательности (который является списком или кортежем списков или кортежей или ndarrays разной длины␣
, → или формы) устарело. Если вы хотели это сделать, вы должны указать 'dtype = object', когда␣
, → создание ndarray
вернуть массив (a, dtype, copy = False, order = order, subok = True)

Как мы видим, траектория переменных в SGD намного более шумная, чем та, которую мы наблюдали при градиентном спуске в предыдущем разделе. Это связано со стохастическим характером градиента. То есть, даже когда мы приближаемся к минимуму, мы все еще подвержены неопределенности, вносимой мгновенным градиентом через η∇fi (x). Даже после 50 шагов качество все равно не очень хорошее. Хуже того, оно не улучшится после дополнительных шагов (мы рекомендуем читателю поэкспериментировать с большим количеством шагов, чтобы убедиться в этом самостоятельно). Это оставляет нам единственную альтернативу - изменить скорость обучения η. Однако, если мы выберем его слишком маленьким, мы не добьемся какого-либо значимого прогресса на начальном этапе. С другой стороны, если мы выберем его слишком большим, мы не получим хорошего решения, как показано выше. Единственный способ решить эти противоречивые цели - динамически снижать скорость обучения по мере продвижения оптимизации.
Это также причина добавления функции скорости обучения lr в функцию шага sgd. В приведенном выше примере любая функциональность для планирования скорости обучения неактивна, поскольку мы устанавливаем связанную функцию lr постоянной, то есть lr = (lambda: 1).
4.4.2. Динамическая скорость обучения
Замена η зависящей от времени скоростью обучения η (t) усложняет управление сходимостью алгоритма оптимизации. В частности, необходимо выяснить, насколько быстро η должно убывать.
Если это произойдет слишком быстро, мы прекратим оптимизацию преждевременно. Если мы уменьшаем его слишком медленно, мы тратим слишком много времени на оптимизацию. Существует несколько основных стратегий, которые используются для корректировки η с течением времени (более сложные стратегии мы обсудим в следующей главе):
η(t) = ηi
if ti ≤ t ≤ ti+1 piecewise constant
η(t) = η0 · e−λt exponential
η(t) = η0 · (βt + 1)−α polynomial                                                                          (4.4.5)

В первом сценарии мы уменьшаем скорость обучения, например, всякий раз, когда прогресс в оптимизации останавливается. Это обычная стратегия обучения глубоких сетей. В качестве альтернативы мы могли бы уменьшить его гораздо более агрессивно, экспоненциально затухая. К сожалению, это приводит к преждевременной остановке до схождения алгоритма. Популярным выбором является разложением полинома с α = 0,5. В случае выпуклой оптимизации есть ряд доказательств, которые показывают, что эта скорость работает хорошо.
Посмотрим, как это выглядит на практике.
def exponential():
global ctr
ctr += 1
return math.exp(-0.1 * ctr)
ctr = 1
lr = exponential # Set up learning rate
d2l.show_trace_2d(f, d2l.train_2d(sgd, steps=1000))

Как и ожидалось, разброс параметров значительно уменьшился. Однако это происходит за счет невозможности сойтись к оптимальному решению x = (0, 0). Даже после 1000 шагов мы все еще очень далеко до оптимального решения. Действительно, алгоритм вообще не может сходиться. С другой стороны, если мы используем полиномиальное убывание, при котором скорость обучения уменьшается с обратным квадратным корнем из числа шагов сходимость хорошая.
def polynomial():
global ctr
ctr += 1
return (1 + 0.1 * ctr)**(-0.5)
ctr = 1
lr = polynomial # Set up learning rate
d2l.show_trace_2d(f, d2l.train_2d(sgd, steps=50))

Есть еще много вариантов того, как установить скорость обучения. Например, мы могли бы начать с небольшой скорости, затем быстро ее увеличить, а затем снова уменьшить, хотя и более медленно. Мы могли даже чередовать меньшую и большую скорость обучения. Таких расписаний великое множество.
А пока давайте сосредоточимся на графиках скорости обучения, для которых возможен всесторонний теоретический анализ, то есть на скорости обучения в выпуклой среде. Для общих невыпуклых задач очень трудно получить значимые гарантии сходимости, так как в общем случае минимизация нелинейных невыпуклых задач NP трудна. Для обзора см., например, отличные конспекты лекций3) Tibshirani 2015.
4.4.3. Анализ сходимости для выпуклых целей
Следующее изложение является необязательным и в первую очередь служит для более интуитивного понимания проблемы. Мы ограничиваемся одним из простейших доказательств, описанных в (Nesterov & Vial, 2000). Существуют значительно более продвинутые методы доказательства, например, когда целевая функция особенно хорошо работает. (Hazan et al., 2008) показывают, что для сильно выпуклых функций, т. е. для функций, которые могут быть ограничены снизу величиной x⊤Qx, их можно минимизировать за небольшое количество шагов, уменьшив скорость обучения, например η ( t) = η0 / (βt + 1). К сожалению, этот случай никогда не встречается в глубоком обучении, и на практике мы остаемся с гораздо более медленным спадом.
Рассмотрим случай, когда
wt + 1 = wt - ηt∂wl (xt, w).                                                                                (4.4.6)
В частности, предположим, что xt взят из некоторого распределения P (x) и что l(x, w) - выпуклая функция по w для всех x. Последний обозначим через
R (w) = Ex∼P [l (x, w)]                                                                                     (4.4.7)
ожидаемый риск, а через R∗ - его минимум по w. Наконец, пусть w∗ будет минимизатором (мы предполагаем, что он существует в области, в которой определено w). В этом случае мы можем отследить расстояние между текущим параметром wt и минимизатором риска w∗ и посмотреть, улучшится ли он со временем:
∥wt + 1 - w∗ ∥2 = ∥wt - ηt∂wl(xt, w) - w∗ ∥2 = ∥wt - w∗ ∥2 + 
η2t ∥∂wl (xt, w) ∥2 - 2ηt ⟨wt - w∗, ∂wl (xt, w)⟩.                                                    (4.4.8)

Градиент ∂wl (xt, w) может быть ограничен сверху некоторой константой Липшица L, следовательно, 
η2t ∥∂wl (xt, w) ∥2 ≤ η2t L2.                                                                                (4.4.9)
Нас больше всего интересует, как изменяется расстояние между wt и w∗ в ожидании. Фактически, для любой конкретной последовательности шагов расстояние может увеличиваться в зависимости от того, с каким xt мы сталкиваемся. Следовательно, нам нужно связать внутренний продукт. По выпуклости имеем

3)https://www.stat.cmu.edu/~ryantibs/convexopt-F15/lectures/26-nonconvex.pdf

l(xt, w∗) ≥ l (xt, wt) + ⟨w∗ - wt, ∂wl (xt, wt)⟩.                                                      (4.4.10)
Используя оба неравенства и вставляя их в вышеприведенное, мы получаем оценку расстояния между параметрами в момент времени t + 1 следующим образом:
∥wt - w∗ ∥2 - ∥wt + 1 - w∗ ∥2 ≥ 2ηt (l (xt, wt)-l (xt, w ∗)) - η2t L2.                          (4.4.11)
Это означает, что мы добиваемся прогресса до тех пор, пока ожидаемая разница между текущими потерями и оптимальными потерями превышает ηtL2. Так как первое должно стремиться к 0, скорость обучения ηt также должна исчезнуть.
Затем мы возьмем ожидания по этому выражению. Это дает
Ewt [∥wt - w∗ ∥2] - Ewt + 1 | wt [∥wt + 1 - w∗ ∥2≥ 2ηt [E [R [wt]] - R∗] - η2t L2.            (4.4.12)
Последний шаг включает суммирование по неравенствам при t ∈ {t,. . . , Т}. Поскольку сумма норм и отбрасывая нижний член, мы получаем
∥w0 - w∗ ∥2 ≥ 2∑Tt = 1ηt [E [R [wt]] - R∗] - L2∑Tt = 1η2t.                                         (4.4.13)
Обратите внимание, что мы воспользовались тем, что задано w0, и поэтому ожидание можно отбросить. Последнее определение
w¯: = ∑Tt = 1 ηtwt / ∑Tt = 1 ηt.                                                                                  (4.4.14)
Тогда по выпуклости следует, что
∑tηtE [R [wt]] ≥∑ηt · [E [w¯]].                                                                            (4.4.15)
Подставляя это в указанное выше неравенство, получаем оценку
[E [w¯]] - R∗ ≤r2 + L2 ∑Tt = 1 η2t / 2∑Tt = 1 ηt.                                                        (4.4.16)
Здесь r2: = ∥w0 - w∗ ∥2 - это граница расстояния между начальным выбором параметров и конечным результатом. Короче говоря, скорость сходимости зависит от того, насколько быстро функция потерь изменяется через константу Липшица L и насколько далеко от оптимальности исходное значение r. Обратите внимание, что оценка дана через w¯, а не через wT. Это так, поскольку w¯ представляет собой сглаженную версию пути оптимизации. Теперь давайте проанализируем некоторые варианты выбора ηt.
• Известный временной горизонт. Когда известны r, L и T, мы можем выбрать η = r / L√T. Это дает верхнюю границу rL (1 + 1 / T) / 2√T < rL / √T. То есть мы сходимся со скоростью O (1 / √T) к оптимальному решению.
• Неизвестный горизонт времени. Всякий раз, когда мы хотим получить хорошее решение для любого времени T, мы можем выбрать η = O (1 / √Т). Это стоит нам дополнительного логарифмического множителя и приводит к верхней границе вида O (log T / √T).
Отметим, что для сильно выпуклых потерь l (x, w ′) ≥ l (x, w) + ⟨w ′ - w, ∂wl (x, w)⟩ + λ2∥w - w′∥2 мы можем сконструировать еще более быстро сходящиеся графики оптимизации. Фактически, экспоненциальный спад по η приводит к оценке вида O (log T / T).
4.4.4. Стохастические градиенты и конечные выборки
До сих пор мы играли немного быстро и свободно, когда речь заходила о стохастическом градиентном спуске. Мы утверждали, что рисуем экземпляры xi, обычно с метками yi из некоторого распределения p (x, y) и что мы используем это, чтобы каким-то образом обновить веса w. В частности, для конечного размера выборки мы просто утверждали, что дискретное распределение p (x, y) = 1/n ∑ni = 1 δxi (x) δyi (y) позволяет нам выполнять SGD над ним.
Однако это не совсем то, что мы сделали. В игрушечных примерах в текущем разделе мы просто добавили шум к не стохастическому градиенту, т. е. мы сделали вид, что у нас есть пары (xi, yi). Оказывается, здесь это оправдано (подробное обсуждение см. в упражнениях). Более тревожно то, что во всех предыдущих обсуждениях мы явно этого не делали. Вместо этого мы повторили все экземпляры ровно один раз. Чтобы понять, почему это предпочтительнее, рассмотрим обратное, а именно: мы выбираем n наблюдений из дискретного распределения с заменой. Вероятность случайного выбора элемента i равна N −1. Таким образом, выбрать его хотя бы один раз - это
P (выберите i) = 1 - P (опустите i) = 1 - (1 - N − 1) N ≈ 1 - e − 1 ≈ 0,63.              (4.4.17)
Аналогичное рассуждение показывает, что вероятность выбрать образец ровно один раз определяется выражением
(СN1) N −1 (1 - N −1) N − 1 = N−1N (1 – N-1)N ≈ e−1 ≈ 0,37. 
Это приводит к увеличению дисперсии и снижению эффективности данных по сравнению с выборкой без замены. Следовательно, на практике мы выполняем последнее (и это выбор по умолчанию на протяжении всей книги). Последнее замечание о том, что повторяющиеся проходы по набору данных пересекают его в другом случайном порядке.



Резюме
· Для выпуклых задач мы можем доказать, что для широкого выбора скорости обучения стохастический градиентный спуск сходится к оптимальному решению.
· Для глубокого обучения это обычно не так. Однако анализ выпуклых задач дает нам полезное представление о том, как подходить к оптимизации, а именно к постепенному снижению скорости обучения, хотя и не слишком быстро.
· Проблемы возникают, когда скорость обучения слишком мала или слишком велика. На практике подходящая скорость обучения часто достигается только после нескольких экспериментов.
· Когда в наборе обучающих данных больше примеров, вычисление каждой итерации для градиентного спуска стоит дороже, поэтому в этих случаях предпочтительнее использовать SGD.
· Гарантии оптимальности для SGD обычно недоступны в невыпуклых случаях, поскольку количество локальных минимумов, требующих проверки, вполне может быть экспоненциальным.
Упражнения
1) Поэкспериментируйте с разными графиками скорости обучения для SGD и с разным количеством итераций. В частности, постройте график зависимости расстояния от оптимального решения (0, 0) от количества итераций.
2) Докажите, что для функции f (x1, x2) = х21 + 2x22 добавление нормального шума к градиенту эквивалентно минимизации функции потерь l (x, w) = (x1 −w1)2 + 2 (x2 −w2)2, где x взят из нормального распределения.
· Вывести среднее значение и дисперсию распределения для x.
· Покажите, что это свойство, вообще говоря, выполняется для целевых функций f (x) = 1/2 (x − µ)⊤Q (x − µ) при Q ⪰ 0.
3) Сравните сходимость SGD при выборке из {(x1, y1),. . . , (xm, ym)} с заменой и при выборке без замены.
4) Как бы вы изменили решатель SGD, если бы некоторый градиент (или, скорее, некоторая связанная с ним координата) был постоянно больше, чем все другие градиенты?
5) Предположим, что f (x) = x2 (1 + sin x). Сколько локальных минимумов у f? Можно ли изменить f так, чтобы для его минимума нужно было оценить все локальные минимумы?
Обсуждения (см. https://discuss.d2l.ai/t/352)

4.5. Мини-пакетный стохастический градиентный спуск
До сих пор мы столкнулись с двумя крайностями в подходе к обучению на основе градиентов: в разделе 4.3 используется полный набор данных для вычисления градиентов и обновления параметров по одному проходу за раз. Наоборот в разделе 4.4 обрабатывает одно наблюдение за раз, чтобы добиться прогресса. У каждого из них есть свои недостатки. Градиентный спуск не особенно эффективен для данных, если данные очень похожи. Стохастический градиентный спуск не особенно эффективен с точки зрения вычислений, поскольку процессоры и графические процессоры не могут использовать всю мощь векторизации. Он предполагает, что может существовать золотая середина, и на самом деле это то, что мы до сих пор использовали в рассмотренных нами примерах.
4.5.1. Векторизация и кэши
В основе решения об использовании мини-батчей лежит вычислительная эффективность. Это легче всего понять, если рассмотреть возможность распараллеливания для нескольких графических процессоров и нескольких серверов. В этом случае нам нужно отправить хотя бы одно изображение на каждый графический процессор. Имея 8 графических процессоров на сервер и 16 серверов, мы уже достигли размера мини-партии 128.
Когда дело касается отдельных графических процессоров или даже процессоров, все обстоит немного сложнее. Эти устройства имеют несколько типов памяти, часто несколько типов вычислительных блоков и разные ограничения пропускной способности между ними. Например, ЦП имеет небольшое количество регистров, а затем кэш L1, L2, а в некоторых случаях даже кэш L3 (который используется совместно различными ядрами процессора). Эти кэши имеют увеличивающийся размер и задержку (и в то же время они уменьшают пропускную способность). Достаточно сказать, что процессор способен выполнять гораздо больше операций, чем может обеспечить интерфейс основной памяти.
· ЦП с тактовой частотой 2 ГГц с 16 ядрами и векторизацией AVX-512 может обрабатывать до 2 · 109 · 16 · 32 = 1012 байт в секунду. Возможности графических процессоров легко превышают это число в 100 раз.
С другой стороны, серверный процессор среднего уровня может иметь пропускную способность не более 100 ГБ / с, то есть менее одной десятой того, что потребовалось бы для поддержания питания процессора. Что еще хуже, не весь доступ к памяти создается одинаково: во-первых, интерфейсы памяти обычно имеют ширину 64 бита или шире (например, на графических процессорах до 384 бит), следовательно, чтение одного байта влечет за собой гораздо более широкий доступ.
· При первом доступе возникают значительные накладные расходы, тогда как последовательный доступ относительно дешев (это часто называется пакетным чтением). Есть еще много вещей, о которых следует помнить, например, кеширование, когда у нас есть несколько сокетов, чиплетов и других структур. Подробное обсуждение выходит за рамки данного раздела. См., например, статью в Википедии4) для более подробного обсуждения.
Способ облегчить эти ограничения - использовать иерархию кешей ЦП, которые на самом деле достаточно быстры, чтобы снабжать процессор данными. Это движущая сила пакетной обработки в глубоком обучении. Чтобы упростить задачу, рассмотрим умножение матрицы на матрицу, скажем, A = BC. У нас есть несколько вариантов вычисления A. Например, мы могли бы попробовать следующее:
1. Мы могли бы вычислить Aij = Bi,: C⊤:, j, т.е. мы могли бы вычислить его поэлементно с помощью скалярных произведений.
2. Мы могли вычислить A:, j = BC⊤:, j, т.е. мы могли вычислить его по одному столбцу за раз. Точно так же мы могли бы вычислить A по одной строке Ai ,: за раз.
3. Мы могли бы просто вычислить A = BC.
4. Мы могли бы разбить B и C на более мелкие блочные матрицы и вычислить A по одному блоку за раз.
Если мы последуем первому варианту, нам нужно будет копировать одну строку и один вектор-столбец в ЦП каждый раз, когда мы хотим вычислить элемент Aij. Хуже того, из-за того, что элементы матрицы выравниваются последовательно, нам, таким образом, требуется доступ ко многим непересекающимся местоположениям для одного из двух векторов, когда мы читаем их из памяти. Второй вариант намного выгоднее. В нем мы можем сохранить вектор-столбец C:, j в кэше ЦП, пока мы продолжаем проходить через B. Это вдвое снижает требования к пропускной способности памяти с соответственно более быстрым доступом. Конечно, вариант 3 наиболее желателен. К сожалению, большинство матриц могут не полностью помещаться в кеш (это все-таки то, что мы обсуждаем). Однако вариант 4 предлагает практически полезную альтернативу: мы можем перемещать блоки матрицы в кеш и умножать их локально. Оптимизированные библиотеки позаботятся об этом за нас. Давайте посмотрим, насколько эффективны эти операции на практике.

4)https://en.wikipedia.org/wiki/Cache_hierarchy

Помимо вычислительной эффективности, накладные расходы, вносимые Python и самой платформой глубокого обучения, значительны. Напомним, что каждый раз, когда мы выполняем команду, интерпретатор Python отправляет команду механизму MXNet, который должен вставить ее в вычислительный граф и обработать ее во время планирования. Такие накладные расходы могут быть весьма вредными. Короче говоря, по возможности рекомендуется использовать векторизацию (и матрицы).
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
npx.set_np()
timer = d2l.Timer()
A = np.zeros((256, 256))
B = np.random.normal(0, 1, (256, 256))
C = np.random.normal(0, 1, (256, 256))
Поэлементное присвоение просто перебирает все строки и столбцы B и C соответственно, чтобы присвоить значение A.
# Вычислить A = BC по одному элементу за раз 
timer.start()
for i in range(256):
for j in range(256):
A[i, j] = np.dot(B[i, :], C[:, j])
A.wait_to_read()
timer.stop()
68.18465781211853
Более быстрая стратегия - выполнять присваивание по столбцам.
# Вычислить A = BC по одному столбцу за раз
timer.start()
for j in range(256):
A[:, j] = np.dot(B, C[:, j])
A.wait_to_read()
timer.stop()
0.21853852272033691

Наконец, наиболее эффективный способ - выполнить всю операцию в одном блоке. Посмотрим, какова соответствующая скорость операций.
# Вычислить A = BC за один раз timer.start ()
А = np.dot (B, C)
A.wait_to_read ()
timer.stop ()
# Умножение и сложение счетчиков как отдельные операции (на практике объединены)
gigaflops = [2/i for i in timer.times]
print(f'performance in Gigaflops: element {gigaflops[0]:.3f}, '
f'column {gigaflops[1]:.3f}, full {gigaflops[2]:.3f}')
производительность в гигафлопсах: элемент 0,029, столбец 9,152, полный 108,782

4.5.2. Минибатчи
В прошлом мы считали само собой разумеющимся, что для обновления параметров будем считывать минипакеты данных, а не отдельные наблюдения. Дадим этому краткое обоснование. Обработка отдельных наблюдений требует от нас выполнения множества операций умножения матрицы на вектор (или даже вектора на вектор), что довольно дорого и сопряжено со значительными накладными расходами для базовой структуры глубокого обучения. Это применимо как к оценке сети в применении к данным (часто называемой логическим выводом), так и к вычислению градиентов для обновления параметров. То есть это применимо всякий раз, когда мы выполняем w ← w - ηtgt, где
gt = ∂wf (xt, w)                                                                                                       (4.5.1)
Мы можем повысить вычислительную эффективность этой операции, применяя ее к минипакетам наблюдений за раз. То есть мы заменяем градиент gt для одного наблюдения на один для небольшого пакета
gt = ∂w1/| Bt|∑i∈Bt f (xi, w)                                                                                      (4.5.2)
Давайте посмотрим, что это влияет на статистические свойства gt: поскольку и xt, и все элементы мини-пакета Bt равномерно и случайным образом отрисовываются из обучающей выборки, математическое ожидание градиента остается неизменным. С другой стороны, дисперсия значительно снижается. Поскольку градиент мини-пакета состоит из b: = | Bt | независимых градиентов, которые усредняются, его стандартное отклонение уменьшается в b–1/2 раз. Это само по себе хорошо, поскольку означает, что обновления более надежно выровнены с полным градиентом.
Наивно, это означало бы, что выбор большой мини-партии Bt был бы универсально желательным.
Увы, через некоторое время дополнительное снижение стандартного отклонения будет минимальным по сравнению с линейным увеличением вычислительных затрат. На практике мы выбираем мини-пакет, который достаточно велик, чтобы обеспечить хорошую вычислительную эффективность, но при этом вписывается в память графического процессора. Чтобы проиллюстрировать экономию, давайте взглянем на код. В нем мы выполняем то же умножение матрицы на матрицу, но на этот раз они будут разбиты на «мини-пакеты» по 64 столбца за раз.
timer.start()
for j in range(0, 256, 64):
A[:, j:j+64] = np.dot(B, C[:, j:j+64])
timer.stop()
print(f'performance in Gigaflops: block {2 / timer.times[3]:.3f}')
performance in Gigaflops: block 340.461

Как мы видим, вычисления на мини-пакете по существу так же эффективны, как и на полной матрице. Следует сделать одно предостережение. В Разделе 3.5 мы использовали тип регуляризации, который сильно зависел от количества дисперсии в минипакете. По мере того, как мы увеличиваем последнее, дисперсия уменьшается, а вместе с ней и преимущество инжекции шума из-за нормализации партии. См., например, (Иоффе, 2017) подробности о том, как масштабировать и вычислять соответствующие термины.
4.5.3. Чтение набора данных
Давайте посмотрим, как эффективно генерируются мини-пакеты из данных. Далее мы используем набор данных, разработанный НАСА для проверки шума крыльев различных самолетов5), чтобы сравнить эти алгоритмы оптимизации. Для удобства мы используем только первые 1 500 примеров. Данные очищаются для предварительной обработки, то есть мы удаляем среднее значение и масштабируем дисперсию до 1 на координату.
#@save
d2l.DATA_HUB['airfoil'] = (d2l.DATA_URL + 'airfoil_self_noise.dat',
'76e5be1548fd8222e5074cf0faae75edff8cf93f')
#@save
def get_data_ch11(batch_size=10, n=1500):
data = np.genfromtxt(d2l.download('airfoil'),
dtype=np.float32, delimiter='\t')
data = (data - data.mean(axis=0)) / data.std(axis=0)
data_iter = d2l.load_array(
(data[:n, :-1], data[:n, -1]), batch_size, is_train=True)
return data_iter, data.shape[1]-1



5)https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise


4.5.4. Реализация с нуля
Вспомните реализацию мини-пакетной SGD из Раздела 3.2. Далее мы предлагаем более общую реализацию. Для удобства она имеет ту же сигнатуру вызова, что и другие алгоритмы оптимизации, представленные далее в этой главе. В частности, мы добавляем состояния ввода состояния и помещаем гиперпараметр в гиперпараметры словаря. Кроме того, мы усредним потерю каждого примера мини-пакета в обучающей функции, поэтому градиент в алгоритме оптимизации не нужно делить на размер пакета.
def sgd(params, states, hyperparams):
for p in params:
p[:] -= hyperparams['lr'] * p.grad

Затем мы реализуем общую функцию обучения, чтобы облегчить использование других алгоритмов оптимизации, представленных далее в этой главе. Она инициализирует модель линейной регрессии и может использоваться для обучения модели с помощью мини-пакетной SGD и других алгоритмов, представленных впоследствии.
#@save
def train_ch11(trainer_fn, states, hyperparams, data_iter,
feature_dim, num_epochs=2):
# Initialization
w = np.random.normal(scale=0.01, size=(feature_dim, 1))
b = np.zeros(1)
w.attach_grad()
b.attach_grad()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
# Train
animator = d2l.Animator(xlabel='epoch', ylabel='loss',
xlim=[0, num_epochs], ylim=[0.22, 0.35])
n, timer = 0, d2l.Timer()
for _ in range(num_epochs):
for X, y in data_iter:
with autograd.record():
l = loss(net(X), y).mean()
l.backward()
trainer_fn([w, b], states, hyperparams)
n += X.shape[0]
if n % 200 == 0:
timer.stop()
animator.add(n/X.shape[0]/len(data_iter),
(d2l.evaluate_loss(net, data_iter, loss),))
timer.start()
print(f'loss: {animator.Y[0][-1]:.3f}, {timer.avg():.3f} sec/epoch')
return timer.cumsum(), animator.Y[0]

Давайте посмотрим, как проходит оптимизация для пакетного градиентного спуска. Это может быть достигнуто путем установки размера мини-пакета на 1500 (т.е. на общее количество примеров). В результате параметры модели обновляются только один раз за эпоху. Прогресс небольшой. Фактически после 6 шагов прогресс останавливается.
def train_sgd(lr, batch_size, num_epochs=2):
data_iter, feature_dim = get_data_ch11(batch_size)
return train_ch11(
sgd, None, {'lr': lr}, data_iter, feature_dim, num_epochs)
gd_res = train_sgd(1, 1500, 10)
loss: 0.254, 0.288 sec/epoch

Когда размер партии равен 1, мы используем SGD для оптимизации. Для простоты реализации мы выбрали постоянную (хоть и небольшую) скорость обучения. В SGD параметры модели обновляются всякий раз, когда обрабатывается пример. В нашем случае это 1500 обновлений за эпоху. Как мы видим, падение значения целевой функции замедляется через одну эпоху. Хотя обе процедуры обработали 1500 примеров за одну эпоху, SGD занимает больше времени, чем градиентный спуск в нашем эксперименте. Это связано с тем, что SGD чаще обновляет параметры и менее эффективно обрабатывать отдельные наблюдения по одному.
sgd_res = train_sgd(0.005, 1)
loss: 0.247, 1.177 sec/epoch

Наконец, когда размер пакета равен 100, мы используем SGD мини-пакета для оптимизации. Время, необходимое для каждой эпохи, короче, чем время, необходимое для SGD, и время для пакетного градиентного спуска.
mini1_res = train_sgd(.4, 100)
loss: 0.247, 0.059 sec/epoch

При уменьшении размера пакета до 10 время для каждой эпохи увеличивается, поскольку рабочая нагрузка для каждой batch менее эффективно выполнять.
mini2_res = train_sgd(.05, 10)
loss: 0.242, 0.255 sec/epoch

Наконец, мы сравниваем время и потери для четырех предварительных экспериментов. Как можно видеть, несмотря на то, что SGD сходится быстрее, чем GD с точки зрения количества обработанных примеров, он использует больше времени для достижения тех же потерь, чем GD, потому что этот пример вычисления градиента на примере неэффективен.
Минипакеты SGD могут найти компромисс между скоростью сходимости и эффективностью вычислений. Размер мини-партии 10 более эффективен, чем SGD; размер мини-пакета 100 даже превосходит GD с точки зрения времени выполнения.
d2l.set_figsize([6, 3])
d2l.plot(*list(map(list, zip(gd_res, sgd_res, mini1_res, mini2_res))),
'time (sec)', 'loss', xlim=[1e-2, 10],
legend=['gd', 'sgd', 'batch size=100', 'batch size=10'])
d2l.plt.gca().set_xscale('log')

4.5.5. Краткая реализация
В Gluon мы можем использовать класс Trainer для вызова алгоритмов оптимизации. Это используется для реализации общей обучающей функции. Мы будем использовать это на протяжении всей текущей главы.
#@save
def train_concise_ch11(tr_name, hyperparams, data_iter, num_epochs=2):
# Initialization
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(init.Normal(sigma=0.01))
trainer = gluon.Trainer(net.collect_params(), tr_name, hyperparams)
loss = gluon.loss.L2Loss()
animator = d2l.Animator(xlabel='epoch', ylabel='loss',
xlim=[0, num_epochs], ylim=[0.22, 0.35])
n, timer = 0, d2l.Timer()
for _ in range(num_epochs):
for X, y in data_iter:
with autograd.record():
l = loss(net(X), y)
l.backward()
trainer.step(X.shape[0])
n += X.shape[0]
if n % 200 == 0:
timer.stop()
animator.add(n/X.shape[0]/len(data_iter),
(d2l.evaluate_loss(net, data_iter, loss),))
timer.start()
print(f'loss: {animator.Y[0][-1]:.3f}, {timer.avg():.3f} sec/epoch')

Использование Gluon для повторения последнего эксперимента показывает идентичное поведение.

data_iter, _ = get_data_ch11(10)
train_concise_ch11('sgd', {'learning_rate': 0.05}, data_iter)
loss: 0.245, 0.181 sec/epoch



Резюме
· Векторизация делает код более эффективным за счет снижения накладных расходов, связанных с платформой глубокого обучения, а также за счет лучшей локализации памяти и кэширования на CPU и GPU.
· Существует компромисс между статистической эффективностью, возникающей из SGD, и вычислительной эффективностью, возникающей при одновременной обработке больших пакетов данных.
· Мини-пакетный стохастический градиентный спуск предлагает лучшее из обоих миров: вычислительную и статистическую эффективность.
· В мини-пакетной SGD мы обрабатываем пакеты данных, полученные путем случайной перестановки обучающих данных (т.е. каждое наблюдение обрабатывается только один раз за период, хотя и в случайном порядке).
· Желательно снижать скорость обучения во время обучения.
· В целом, SGD минипакета быстрее, чем SGD и градиентный спуск для сходимости к меньшему риску, когда измеряется в единицах времени.


Упражнения
1. Измените размер пакета и скорость обучения и проследите за скоростью снижения значения целевой функции и времени, затраченного в каждую эпоху.
2. Прочтите документацию MXNet и используйте функцию set_learning_rate класса Trainer, чтобы уменьшить скорость обучения SGD мини-пакета до 1/10 от его предыдущего значения после каждой эпохи.
3. Сравните минипакетную SGD с вариантом, который фактически производит выборку с заменой из обучающего набора. Что происходит?
4. Злой джинн копирует ваш набор данных, не сообщая вам об этом (т.е. каждое наблюдение происходит дважды, и ваш набор данных увеличивается в два раза по сравнению с исходным размером, но вам никто не сказал). Как изменяется поведение SGD, SGD минипакета и градиентного спуска?

Обсуждения (см. https://discuss.d2l.ai/t/353)

4.6. Импульс
В Разделе 4.4 мы рассмотрели, что происходит при выполнении стохастического градиентного спуска, то есть при выполнении оптимизации, когда доступен только зашумленный вариант градиента. В частности, мы заметили, что для шумных градиентов нам нужно быть особенно осторожными, когда дело доходит до выбора скорости обучения в условиях шума. Если мы уменьшим его слишком быстро, сходимость остановится. Если мы будем слишком снисходительны, мы не сможем прийти к достаточно хорошему решению, поскольку шум продолжает уводить нас от оптимальности.
4.6.1. Основы
В этом разделе мы рассмотрим более эффективные алгоритмы оптимизации, особенно для определенных типов задач оптимизации, которые распространены на практике.
4.6.1.1. Утечка средних значений
В предыдущем разделе мы обсуждали SGD мини-пакета как средство ускорения вычислений.
У этого метода также был приятный побочный эффект, заключающийся в том, что усреднение градиентов уменьшало дисперсию. SGD мини-партии можно рассчитать следующим образом:
gt, t − 1 = ∂w1/| Bt| ∑i∈Btf (xi, wt − 1) = 1/| Bt|∑i∈Bthi, t − 1.                                       (4.6.1)
Чтобы не усложнять обозначения, здесь мы использовали hi, t − 1 = ∂wf (xi, wt−1) в качестве SGD для выборки i с использованием весов, обновляемых в момент времени t - 1. Было бы неплохо, если бы мы могли извлечь выгоду из эффекта уменьшения дисперсии даже за пределами усреднения градиентов для мини-партии. Один из вариантов решения этой задачи - заменить вычисление градиента «утечкой среднего»:
vt = βvt − 1 + gt, t − 1                                                                                             (4.6.2)
для некоторого β ∈ (0, 1). Он эффективно заменяет мгновенный градиент градиентом, усредненным по нескольким прошлым градиентам. v называется импульсом. Он накапливает прошлые градиенты подобно тому, как тяжелый шар, катящийся по ландшафту целевой функции, объединяется с прошлыми силами. Чтобы увидеть, что происходит более подробно, давайте рекурсивно расширим vt до
vt = β2vt − 2 + βgt − 1, t − 2 + gt, t − 1 =. . . = ∑t − 1τ = 0 βτgt − τ, t − τ − 1.                         (4.6.3)
Большое значение β соответствует среднему значению на большом расстоянии, тогда как небольшое значение β составляет лишь небольшую поправку по сравнению с градиентным методом. Новая замена градиента больше не указывает направление наискорейшего спуска на конкретном экземпляре, а скорее в направлении средневзвешенного значения прошлых градиентов. Это позволяет нам реализовать большинство преимуществ усреднения по пакету без затрат на фактическое вычисление градиентов на нем. Мы вернемся к этой процедуре усреднения более подробно позже.
Вышеупомянутые рассуждения легли в основу того, что сейчас известно, как методы ускоренного градиента, например, градиенты с импульсом. Они пользуются дополнительным преимуществом, будучи гораздо более эффективными в случаях, когда проблема оптимизации плохо обусловлена ​​(то есть, когда есть некоторые направления, где прогресс идет намного медленнее, чем в других, напоминающих узкий каньон). Кроме того, они позволяют нам усреднять по последующим градиентам, чтобы получить более стабильные направления спуска.
Действительно, аспект ускорения даже для выпуклых задач без шума является одной из ключевых причин, почему импульс работает и почему он работает так хорошо.
Как и следовало ожидать, из-за своей эффективности импульс является хорошо изученным предметом в оптимизации для глубокого обучения и не только. См., например, прекрасную описательную статью6) (Goh, 2017) для более глубокого анализа и интерактивной анимации. Его предложил (Поляк, 1964). (Нестеров, 2018) есть подробное теоретическое обсуждение в контексте выпуклой оптимизации. Давно известно, что импульс в глубоком обучении приносит пользу. См., например, обсуждение (Sutskever et al., 2013) для подробностей.
4.6.1.2. Плохо обусловленная задача
Чтобы лучше понять геометрические свойства импульсного метода, мы вернемся к градиентному спуску, хотя и со значительно менее приятной целевой функцией. Напомним, что в разделе 4.3 мы использовали f (x) = x21 + 2x22, т.е. эллипсоидный объектив с умеренными искажениями. Мы искажаем эту функцию далее, растягивая ее в направлении x1 через
f (x) = 0,1x21 + 2x22.                                                                                            (4.6.4)
Как и раньше, f имеет минимум в (0, 0). Эта функция очень плоская в направлении x1. 

6)https://distill.pub/2017/momentum/

Давайте посмотрим, что произойдет, когда мы выполним градиентный спуск, как и раньше, для этой новой функции. Мы выбрали скорость обучения 0,4.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import np, npx
npx.set_np()
eta = 0.4
def f_2d(x1, x2):
return 0.1 * x1 ** 2 + 2 * x2 ** 2
def gd_2d(x1, x2, s1, s2):
return (x1 - eta * 0.2 * x1, x2 - eta * 4 * x2, 0, 0)
d2l.show_trace_2d(f_2d, d2l.train_2d(gd_2d))

По конструкции градиент в направлении x2 намного выше и изменяется намного быстрее, чем в горизонтальном направлении x1. Таким образом, мы застряли между двумя нежелательными вариантами: если мы выберем небольшую скорость обучения, мы гарантируем, что решение не расходится в направлении x2, но мы обременены медленной сходимостью в направлении x1. И наоборот, с большой скоростью обучения мы быстро прогрессируем в направлении x1, но расходимся в направлении x2. Пример ниже показывает, что происходит даже после небольшого увеличения скорости обучения с 0,4 до 0,6. Сходимость в направлении x1 улучшается, но общее качество решения намного хуже.
eta = 0,6
d2l.show_trace_2d (f_2d, d2l.train_2d (gd_2d))

4.6.1.3. Метод импульса
Импульсный метод позволяет решить описанную выше задачу градиентного спуска. Глядя на график оптимизации выше, мы можем интуитивно догадаться, что усреднение градиентов за прошлое будет хорошо. В конце концов, в направлении x1 это будет агрегировать хорошо выровненные градиенты, тем самым увеличивая расстояние, которое мы преодолеваем с каждым шагом. И наоборот, в направлении x2, где градиенты колеблются, совокупный градиент уменьшит размер шага из-за колебаний, которые компенсируют друг друга. Использование vt вместо градиента gt дает следующие уравнения обновления:
vt ← βvt − 1 + gt, t − 1,
xt ← xt − 1 - ηtvt.                                                                                                       (4.6.5)

Отметим, что при β = 0 мы восстанавливаем обычный градиентный спуск. Прежде чем углубляться в математические свойства, давайте кратко рассмотрим, как алгоритм ведет себя на практике.
def momentum_2d(x1, x2, v1, v2):
v1 = beta * v1 + 0.2 * x1
v2 = beta * v2 + 4 * x2
return x1 - eta * v1, x2 - eta * v2, v1, v2
eta, beta = 0.6, 0.5
d2l.show_trace_2d(f_2d, d2l.train_2d(momentum_2d))

Как мы видим, даже при той же скорости обучения, которую мы использовали раньше, импульс все еще хорошо сходится. Посмотрим, что произойдет, если мы уменьшим параметр импульса. Уменьшение его вдвое до β = 0,25 приводит к тому, что траектория практически не сходится. Тем не менее, это намного лучше, чем без импульса (когда решение расходится).
eta, beta = 0.6, 0.25 
d2l.show_trace_2d(f_2d, d2l.train_2d(momentum_2d))

Обратите внимание, что мы можем комбинировать импульс с SGD и, в частности, с minibatch-SGD. Единственное изменение состоит в том, что в этом случае мы заменяем градиенты gt, t − 1 на gt. Наконец, для удобства мы инициализируем v0 = 0 в момент времени t = 0. Давайте посмотрим, что на самом деле делает утечка усреднения с обновлениями.
4.6.1.4. Эффективный вес образца
Напомним, что vt = ∑t − 1τ = 0 βτgt − τ, t − τ − 1. В пределе слагаемые складываются до ∑∞τ = 0 βτ = 1/(1 – β). Другими словами, вместо того, чтобы делать шаг размером η в GD или SGD, мы делаем шаг размером η/(1 – β), в то же время, имея дело с потенциально лучшим направлением спуска. Это два преимущества в одном. Чтобы проиллюстрировать, как ведет себя взвешивание для различных вариантов β, рассмотрим диаграмму ниже.
d2l.set_figsize()
betas = [0.95, 0.9, 0.6, 0]
for beta in betas:
x = d2l.numpy(np.arange(40))
d2l.plt.plot(x, beta ** x, label=f'beta = {beta:.2f}')
d2l.plt.xlabel('time')
d2l.plt.legend();


4.6.2. Практические эксперименты
Давайте посмотрим, как импульс работает на практике, то есть когда используется в контексте правильного оптимизатора. Для этого нам нужна несколько более масштабируемая реализация.
4.6.2.1. Реализация с нуля
По сравнению с SGD (мини-партией) импульсный метод должен поддерживать набор вспомогательных переменных, то есть скорость. Он имеет ту же форму, что и градиенты (и переменные задачи оптимизации). В реализации ниже мы называем эти переменные состояниями.
def init_momentum_states(feature_dim):
v_w = np.zeros((feature_dim, 1))
v_b = np.zeros(1)
return (v_w, v_b)
def sgd_momentum(params, states, hyperparams):
for p, v in zip(params, states):
v[:] = hyperparams['momentum'] * v + p.grad
p[:] -= hyperparams['lr'] * v
Let us see how this works in practice.
def train_momentum(lr, momentum, num_epochs=2):
d2l.train_ch11(sgd_momentum, init_momentum_states(feature_dim),
{'lr': lr, 'momentum': momentum}, data_iter,
feature_dim, num_epochs)
data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
train_momentum(0.02, 0.5)
loss: 0.245, 0.310 sec/epoch

Когда мы увеличиваем импульс гиперпараметра импульса до 0,9, он составляет значительно больший эффективный размер выборки, составляющий 1/(1-0,9) = 10. Мы немного снижаем скорость обучения до 0,01, чтобы держать ситуацию под контролем. 
train_momentum(0.01, 0.9)
loss: 0.246, 0.383 sec/epoch

Дальнейшее снижение скорости обучения решает любую проблему неплавной оптимизации.
Установка значения 0,005 дает хорошие свойства сходимости.
train_momentum(0.005, 0.9)
loss: 0.245, 0.365 sec/epoch

4.6.2.2. Краткая реализация
В Gluon очень мало возможностей, так как стандартный решатель sgd уже имеет встроенный импульс. Установка параметров согласования дает очень похожую траекторию.
d2l.train_concise_ch11('sgd', {'learning_rate': 0.005, 'momentum': 0.9},
data_iter)
loss: 0.246, 0.282 sec/epoch

4.6.3. Теоретический анализ
Пока что двухмерный пример f (x) = 0,1x21 + 2x22 казался довольно надуманным. Теперь мы увидим, что это на самом деле довольно характерно для типов проблем, с которыми можно столкнуться, по крайней мере, в случае минимизации выпуклых квадратичных целевых функций.
4.6.3.1. Квадратичные выпуклые функции
Рассмотрим функцию
h (x) = 12x⊤Qx + x⊤c + b.                                                                                  (4.6.6)
Это общая квадратичная функция. Для положительно определенных матриц Q ≻ 0, т. е. для матриц с положительными собственными значениями она имеет минимизатор при x ∗ = −Q−1c с минимальным значением b – 1/2c⊤Q−1c. Следовательно, мы можем переписать h как
h (x) = 1/2 (x - Q−1c) ⊤Q (x - Q−1c) + b −1/2c⊤Q−1c.                                        (4.6.7)
Градиент задается формулой ∂xf (x) = Q (x - Q−1c). То есть он задается расстоянием между x и минимизатором, умноженным на Q. Следовательно, импульс также является линейной комбинацией членов Q (xt - Q−1c).
Поскольку Q положительно определен, он может быть разложен на свою собственную систему с помощью Q = O⊤ΛO для ортогональной (вращательной) матрицы O и диагональной матрицы Λ положительных собственных значений. Это позволяет нам выполнить замену переменных с x на z: = O (x - Q−1c), чтобы получить значительно упрощенное выражение:
h (z) = 12z⊤Λz + b ′.                                                                                      (4.6.8)
Здесь c ′ = b −1/2c⊤Q − 1c. Поскольку O является только ортогональной матрицей, это не влияет на градиенты значимым образом. Выражаясь в терминах z градиентного спуска, алгоритм приобретает вид
zt = zt−1 - Λzt − 1 = (I - Λ) zt−1.                                                                         (4.6.9)
Важным фактом в этом выражении является то, что градиентный спуск не смешивается между разными собственными подпространствами. То есть, выраженная в терминах собственной системы векторов Q, задача оптимизации решается покоординатно. Это также относится к импульсу.
vt = βvt−1 + Λzt−1
zt = zt−1 - η (βvt−1 + Λzt−1) = (I - ηΛ) zt−1 - ηβvt−1.                                          (4.6.10)

При этом мы только что доказали следующую теорему: 
Градиентный спуск с импульсом и без него для выпуклой квадратичной функции разлагается на покоординатную оптимизацию в направлении собственных векторов квадратичной матрицы.
4.6.3.2. Скалярные функции
Учитывая приведенный выше результат, давайте посмотрим, что произойдет, когда мы минимизируем функцию f (x) = λ/2x2. Для градиентного спуска имеем
xt+1 = xt - ηλxt = (1 - ηλ) xt.                                                                                (4.6.11)
Когда | 1 - ηλ | <1 эта оптимизация сходится экспоненциально, так как после t шагов имеем xt = (1 - ηλ)tx0. Это показывает, как скорость сходимости улучшается на начальном этапе, когда мы увеличиваем скорость обучения η до тех пор, пока ηλ = 1. После этого все расходится, и при ηλ> 2 проблема оптимизации расходится.
lambdas = [0.1, 1, 10, 19]
eta = 0.1
d2l.set_figsize((6, 4))
for lam in lambdas:
t = d2l.numpy(np.arange(20))
d2l.plt.plot(t, (1 - eta * lam) ** t, label=f'lambda = {lam:.2f}')
d2l.plt.xlabel('time')
d2l.plt.legend();

Чтобы проанализировать сходимость в случае импульса, мы начнем с переписывания уравнений обновления в терминах двух скаляров: один для x и один для импульса v. Это дает:
[vt+1xt+1] = [β λ − ηβ (1 - ηλ)] [vtxt] = R (β, η, λ) [vtxt].                                     (4.6.12)
Мы использовали R для обозначения поведения сходимости 2 × 2. После t шагов первоначальный выбор [v0, x0] становится R (β, η, λ) t [v0, x0]. Следовательно, скорость сходимости определяется собственными значениями R. См. пост Distill7) из (Goh, 2017) для получения отличной анимации и (Flammarion & (Фламмарион и  Бах, 2015) для подробного анализа. Можно показать, что 0 <ηλ <2 + 2β импульс сходится.
Это более широкий диапазон возможных параметров по сравнению с 0 <ηλ <2 для градиентного спуска. Это также предполагает, что в целом желательны большие значения β. Дальнейшие подробности требуют изрядного количества технических подробностей, и мы рекомендуем заинтересованному читателю ознакомиться с оригинальными публикациями.


Резюме
· Импульс заменяет градиенты утечкой среднего по прошлым градиентам. Это значительно ускоряет сходимость.
· Это желательно как для бесшумного градиентного спуска, так и (зашумленного) стохастического градиентного спуска.
· Импульс предотвращает остановку процесса оптимизации, которая гораздо более вероятна при стохастическом градиентном спуске.
· Эффективное количество градиентов равно 1/(1-β) из-за экспоненциального уменьшения веса прошлых данных.
· В случае выпуклых квадратичных задач она может быть подробно явно проанализирована.
· Реализация довольно проста, но требует от нас сохранения дополнительного вектора состояния (импульса v).
Упражнения
1. Используйте другие комбинации гиперпараметров импульса и скорости обучения, наблюдайте и анализируйте различные экспериментальные результаты.
2. Попробуйте использовать GD и импульс для квадратичной задачи, в которой у вас есть несколько собственных значений, т.е. f (x) = ½ ∑iλix2i, например, λi = 2−i. Постройте график уменьшения значений x для инициализации xi = 1.
3. Вывести минимальное значение и минимизатор для h (x) = ½ x⊤Qx + x⊤c + b.
4. Что меняется, когда мы выполняем SGD с импульсом? Что происходит, когда мы используем мини-пакет SGD с импульсом? Поэкспериментируйте с параметрами?

7) https://distill.pub/2017/momentum/)

Обсуждения (см. https://discuss.d2l.ai/t/354)
4.7. Адаград
Давайте начнем с рассмотрения проблем обучения с функциями, которые возникают нечасто.
4.7.1 Редкие функции и скорость обучения
Представьте, что мы обучаем языковые модели. Чтобы получить хорошую точность, мы обычно хотим уменьшить скорость обучения по мере продолжения обучения, обычно со скоростью 0 (t-1/2) или медленнее. Теперь рассмотрим обучение модели на разреженных элементах, то есть функциях, которые встречаются нечасто. Это обычное явление для естественного языка, например, гораздо менее вероятно, что мы увидим слово предварительной подготовки раньше, чем обучение.
Однако это также распространено в других областях, таких как вычислительная реклама и персонализированная совместная фильтрация. Ведь есть много вещей, которые интересны лишь небольшому количеству людей.
Параметры, связанные с редко встречающимися функциями, получают значимые обновления только при появлении этих функций. Учитывая снижающуюся скорость обучения, мы можем оказаться в ситуации, когда обратный параметр для общих функций довольно быстро сходится к своим оптимальным значениям, в то время как для редких функций нам все еще не хватает достаточно частого наблюдения, прежде чем можно будет определить их оптимальные значения. Другими словами, скорость обучения либо снижается слишком медленно для часто используемых функций, либо слишком быстро для нечастых.
Возможный способ исправить эту проблему - это подсчитать количество раз, когда мы видим определенную функцию, и использовать это как часы для корректировки скорости обучения. То есть, вместо того, чтобы выбирать скорость обучения в виде η = η0 /√t + c, мы могли бы использовать ηi = η0 /√s (i, t) + c. Здесь s (i, t) подсчитывает количество отличных от нуля характеристик i, которые мы наблюдали до момента t. На самом деле это довольно легко реализовать без значительных накладных расходов. Однако оно терпит неудачу, когда у нас не совсем разреженные данные, а просто данные, где градиенты часто очень малы и лишь изредка велики. В конце концов, непонятно, где провести грань между тем, что квалифицируется как наблюдаемая особенность, или нет.
Adagrad (Duchi et al., 2011) решает эту проблему, заменяя довольно грубый счетчик s (i, t) совокупностью квадратов ранее наблюдаемых градиентов. В частности, он использует 
s (i, t + 1) = s(i, t) + (∂if (x))2
как средство регулировки скорости обучения. Это дает два преимущества: во-первых, нам больше не нужно решать, когда градиент достаточно велик. Во-вторых, он автоматически масштабируется в зависимости от величины градиентов. Координаты, которые обычно соответствуют большим градиентам, значительно уменьшаются, тогда как другие с маленькими градиентами обрабатываются гораздо более щадящим образом. На практике это приводит к очень эффективной процедуре оптимизации вычислительной рекламы и связанных с ней задач. Но за этим скрываются некоторые дополнительные преимущества, присущие Adagrad, которые лучше всего понять в контексте предварительной подготовки.
4.7.2. Предварительная подготовка
Задачи выпуклой оптимизации хороши для анализа характеристик алгоритмов. В конце концов, для большинства невыпуклых задач трудно получить значимые теоретические гарантии, но интуиция и понимание часто остаются неизменными. Давайте посмотрим на проблему минимизации 
f (x) = 1/2x⊤Qx + c⊤x + b.
Как мы видели в разделе 4.6, можно переписать эту задачу в терминах ее собственного разложения Q = U⊤ΛU, чтобы получить значительно упрощенную задачу, в которой каждая координата может быть решена индивидуально:
f (x) = ¯f (x¯) = 1/2x¯⊤Λx¯ + c¯⊤x¯ + b.                                                          (4.7.1)
Здесь мы использовали x = Ux и, следовательно, c = Uc. Модифицированная задача имеет в качестве минимизатора x¯ = −Λ-1c¯ и минимальное значение −1/2c¯⊤Λ-1c¯ + b. Это намного проще вычислить, поскольку Λ - диагональная матрица, содержащая собственные значения Q.
Если мы немного возмущаем c, мы надеемся найти лишь небольшие изменения в минимизаторе f. К сожалению, это не тот случай. Хотя небольшие изменения c приводят к столь же незначительным изменениям c¯, это не относится к минимизатору f (и ¯f соответственно). Когда собственные значения большие, i велики, мы увидим только небольшие изменения x¯i и минимума ¯f. И наоборот, при небольших изменениях i изменения x¯i могут быть значительными. Отношение между наибольшим и наименьшим собственным значением называется числом обусловленности задачи оптимизации.
κ = Λ1/Λd                                                                                                    (4.7.2)
Если число обусловленности κ велико, сложно точно решить задачу оптимизации. Нам нужно быть внимательными при выборе большого динамического диапазона значений. Наш анализ приводит к очевидному, хотя и несколько наивному вопросу: нельзя ли просто «исправить» проблему, искажая пространство так, чтобы все собственные значения равнялись 1. Теоретически это довольно просто: нам нужно только знать собственные значения и собственные вектора матрицы Q, чтобы изменить масштаб задачи с x до одного в z: = Λ1/2 Ux. В новой системе координат x⊤Qx можно упростить до ∥z∥2. Увы, это довольно непрактичное предложение. Вычисление собственных значений и собственных векторов, как правило, намного дороже, чем решение реальной проблемы.
Хотя точное вычисление собственных значений может быть дорогостоящим, угадывать их и вычислять даже несколько приближенно уже может быть намного лучше, чем вообще ничего не делать. В частности, мы могли бы использовать диагональные элементы Q и соответствующим образом масштабировать его. Это намного дешевле, чем вычисление собственных значений.
Q˜ = diag−1/2 (Q) Qdiag−1/2 (Q).                                                                    (4.7.3)
В этом случае Q˜ij = Qij / √QiiQjj и, в частности, Q˜ii = 1 для всех i. В большинстве случаев это значительно упрощает число условий. Например, в случаях, которые мы обсуждали ранее, это полностью устранило бы проблему, поскольку проблема выровнена по оси.
К сожалению, мы сталкиваемся с еще одной проблемой: в глубоком обучении мы обычно не имеем доступа даже ко второй производной целевой функции: для x ∈ Rd вторая производная даже в минипакете может потребовать пространства O(d2) и использовать для вычислений, что делает ее практически токсичной.
Гениальная идея Adagrad состоит в том, чтобы использовать прокси для этой неуловимой диагонали гессиана, которая является относительно дешевой в вычислении и эффективной, - величиной самого градиента.
Чтобы понять, почему это работает, давайте посмотрим на ¯f (x¯). У нас есть это
∂x¯¯f (x¯) = Λx¯ + c¯ = Λ (x¯ - x¯0),                                                        (4.7.4)
где x¯0 - минимизатор ¯f.  Следовательно, величина градиента зависит как от Λ, так и от расстояния до оптимальности. Если бы x¯ - x¯0 не изменилось, этого бы хватило. Ведь в этом случае достаточно величины градиента ∂x¯¯f (x¯). Поскольку AdaGrad - это алгоритм стохастического градиентного спуска, мы увидим градиенты с ненулевой дисперсией даже при оптимальности. В результате мы можем безопасно использовать дисперсию градиентов как дешевую замену масштабирования с помощью матрицы Гессе. Подробный анализ выходит за рамки этого раздела (это несколько страниц). Мы отсылаем читателя к (Duchi et al., 2011) за подробностями.
4.7.3. Алгоритм
Формализуем обсуждение сверху. Мы используем переменную st для накопления прошлой дисперсии градиента следующим образом.
gt = ∂w l(yt, f (xt, w)), 
st = st-1 + g2t, 
wt = wt-1 - η√st + ϵ · gt.                                                                                (4.7.5)
Здесь операции применяются по координатам. То есть v2 имеет записи v2i. Точно так же √1/v имеет элементы √1/vi, а u · v содержит элементы uivi. Как и раньше, η - скорость обучения, а ϵ - аддитивная константа, которая гарантирует, что мы не делим на 0. Наконец, мы инициализируем s0 = 0.
Как и в случае с импульсом, нам нужно отслеживать вспомогательную переменную, в этом случае, чтобы учесть индивидуальную скорость обучения для каждой координаты. Это не увеличивает стоимость Adagrad значительно по сравнению с SGD, просто потому, что основная стоимость обычно заключается в вычислении l(yt, f (xt, w)) и его производной.
Обратите внимание, что накопление квадратов градиентов в st означает, что st растет по существу с линейной скоростью (несколько медленнее, чем линейно на практике, поскольку градиенты изначально уменьшаются). Это приводит к скорости обучения O (t−1/2), хотя и настраивается для каждой координаты. Для выпуклых проблем этого вполне достаточно. Однако при глубоком обучении мы можем захотеть снизить скорость обучения более медленно. Это привело к появлению ряда вариантов Адаграда, которые мы обсудим в следующих главах. А пока давайте посмотрим, как это ведет себя в квадратичной выпуклой задаче. Мы используем ту же задачу, что и раньше: 
f (x) = 0,1x21 + 2x22.                                                                                         (4.7.6)
Мы собираемся реализовать Adagrad, используя ту же скорость обучения ранее, то есть η = 0,4. Как видим, итерационная траектория независимой переменной более плавная. Однако из-за кумулятивного эффекта st скорость обучения постоянно снижается, поэтому независимая переменная не так сильно перемещается на более поздних этапах итерации.
%matplotlib inline from d2l 
import mxnet as d2l
import math from mxnet 
import np, npx

npx.set_np()
def adagrad_2d(x1, x2, s1, s2):
eps = 1e-6
g1, g2 = 0.2 * x1, 4 * x2
s1 += g1 ** 2
s2 += g2 ** 2
x1 -= eta / math.sqrt(s1 + eps) * g1
x2 -= eta / math.sqrt(s2 + eps) * g2
return x1, x2, s1, s2
def f_2d(x1, x2):
return 0.1 * x1 ** 2 + 2 * x2 ** 2
eta = 0.4
d2l.show_trace_2d(f_2d, d2l.train_2d(adagrad_2d))

Когда мы увеличиваем скорость обучения до 2, мы видим намного лучшее поведение. Это уже указывает на то, что снижение скорости обучения может быть довольно агрессивным, даже в случае отсутствия шума, и нам нужно убедиться, что параметры сходятся соответствующим образом.
eta = 2 
d2l.show_trace_2d (f_2d, d2l.train_2d (adagrad_2d))

4.7.4. Реализация с нуля
Как и в случае с методом импульса, Adagrad должен поддерживать переменное состояние той же формы, что и параметры.
def init_adagrad_states(feature_dim):
s_w = np.zeros((feature_dim, 1))
s_b = np.zeros(1)
return (s_w, s_b)
def adagrad(params, states, hyperparams):
eps = 1e-6
for p, s in zip(params, states):
s[:] += np.square(p.grad)
p[:] -= hyperparams['lr'] * p.grad / np.sqrt(s + eps)

По сравнению с экспериментом в разделе 4.5 мы используем более высокую скорость обучения для обучения модели.
data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
d2l.train_ch11(adagrad, init_adagrad_states(feature_dim),
{'lr': 0.1}, data_iter, feature_dim);
loss: 0.243, 0.389 sec/epoch

4.7.5. Краткая реализация
Используя экземпляр Trainer алгоритма adagrad, мы можем вызвать алгоритм Adagrad в Gluon.
d2l.train_concise_ch11('adagrad', {'learning_rate': 0.1}, data_iter) 
loss: 0.242, 0.427 sec/epoch

Резюме
• Adagrad динамически снижает скорость обучения для каждой координаты.
· Он использует величину градиента как средство регулировки скорости достижения прогресса - координаты с большими градиентами компенсируются меньшей скоростью обучения.
· Вычисление точной второй производной обычно заразительно в задачах глубокого обучения из-за ограничений памяти и вычислительных ресурсов. Градиент может быть полезным прокси.
· Если проблема оптимизации имеет довольно неровную структуру, Adagrad может помочь уменьшить искажение.
· Adagrad особенно эффективен для редких функций, когда скорость обучения должна снижаться медленнее для редко встречающихся терминов.
· В отношении проблем глубокого обучения Adagrad иногда может слишком агрессивно снижать скорость обучения. Мы обсудим стратегии смягчения этого в контексте Раздела 4.10.
Упражнения
1. Докажите, что для ортогональной матрицы U и вектора c выполняется следующее: ∥c - δ∥2 = ∥Uc - Uδ∥2. Почему это означает, что величина возмущений не меняется после ортогональной замены переменных?
2. Попробуйте Adagrad для f (x) = 0,1x1 + 2x22, а также для целевой функции, повернутой на 45 градусов, т.е. f (x) = 0,1 (x1 + x2)2 + 2(x1 - x2)2. Он ведет себя иначе?
3. Докажите теорему Гершгорина о круге149, которая утверждает, что собственные значения λi матрицы M удовлетворяют | λi - Mjj | ≤ ∑k̸ =j | Mjk | хотя бы для одного выбора j.
4. Что теорема Гершгорина говорит нам о собственных значениях диагональной матрицы diag−1/2(M) Mdiag−1/2(M)?
5. Попробуйте Adagrad для правильной глубокой сети, например, Раздел 6.6 применительно к Fashion MNIST.
6. Как вам нужно изменить Adagrad, чтобы добиться менее агрессивного снижения скорости обучения?

149 https://en.wikipedia.org/wiki/Gershgorin_circle_theorem

4.8. RMSProp
Один из ключевых вопросов в Разделе 4.7 заключается в том, что скорость обучения снижается при заранее заданном графике эффективного O (t–1/2). Хотя это обычно подходит для выпуклых задач, он может быть не идеальным для невыпуклых задач, таких как те, которые встречаются в глубоком обучении. Тем не менее, координатная адаптивность Adagrad очень желательна в качестве предобуславливателя.
(Tieleman & Hinton, 2012) предложили алгоритм RMSProp как простое решение для разделения планирования скорости и скорости обучения, адаптируемой к координатам. Проблема в том, что Adagrad накапливает квадраты градиента gt в вектор состояния st = st-1 + g2t. В результате st продолжает неограниченно расти из-за отсутствия нормализации, по существу, линейно по мере сходимости алгоритма.
Один из способов решить эту проблему нужно использовать st / t. Для разумных распределений gt он будет сходиться. К сожалению, может пройти очень много времени, прежде чем поведение ограничения начнет иметь значение, поскольку процедура запоминает полную траекторию значений. Альтернативой является использование среднего утечки так же, как мы использовали в методе импульса, то есть st ← γst-1 + (1 - γ) g2t для некоторого параметра γ > 0. Сохранение всех остальных частей без изменений дает RMSProp.
4.8.1. Алгоритм
Запишем уравнения подробно.
st ← γst-1 + (1 - γ) g2t, 
xt ← xt-1 - η√st + ϵ ⊙ gt.                                                                                     (4.8.1)

Константа ϵ> 0 обычно устанавливается равной 10−6, чтобы гарантировать, что мы не страдаем от деления на ноль или слишком большого размера шага. Учитывая это расширение, теперь мы можем управлять скоростью обучения η независимо от масштабирования, применяемого для каждой координаты. Что касается средних утечек, мы можем применить те же рассуждения, которые применялись ранее в случае импульсного метода.
Расширение определения st, приводит к
st = (1 - γ) g2t + γst-1 = (1 - γ) (g2t + γg2t-1 + γ2gt-2 + ...,).                                      (4.8.2)
Как и ранее в разделе 4.6, мы используем 1 + γ + γ2 +. . . , = 1/(1 – γ). Следовательно, сумма весов нормализуется к 1 с периодом полураспада при наблюдении γ-1. Давайте визуализировать веса за последние 40 временных шагов для различных вариантов γ.
%matplotlib inline
from d2l import mxnet as d2l
import math
from mxnet import np, npx
npx.set_np()
150 https://discuss.d2l.ai/t/355
d2l.set_figsize()
gammas = [0.95, 0.9, 0.8, 0.7]
for gamma in gammas:
x = d2l.numpy(np.arange(40))
d2l.plt.plot(x, (1-gamma) * gamma ** x, label=f'gamma = {gamma:.2f}')
d2l.plt.xlabel('time');

4.8.2. Реализация с нуля
Как и раньше, мы используем квадратичную функцию f (x) = 0,1x21 + 2x22 для наблюдения за траекторией RMSProp.
Напомним, что в разделе 4.7, когда мы использовали Adagrad со скоростью обучения 0,4, переменные перемещались очень медленно на более поздних этапах алгоритма, поскольку скорость обучения уменьшалась слишком быстро.
Поскольку η регулируется отдельно, этого не происходит с RMSProp.
def rmsprop_2d(x1, x2, s1, s2):
g1, g2, eps = 0.2 * x1, 4 * x2, 1e-6
s1 = gamma * s1 + (1 - gamma) * g1 ** 2
s2 = gamma * s2 + (1 - gamma) * g2 ** 2
x1 -= eta / math.sqrt(s1 + eps) * g1
x2 -= eta / math.sqrt(s2 + eps) * g2
return x1, x2, s1, s2
def f_2d(x1, x2):
return 0.1 * x1 ** 2 + 2 * x2 ** 2
eta, gamma = 0.4, 0.9
d2l.show_trace_2d(f_2d, d2l.train_2d(rmsprop_2d))

Затем мы реализуем RMSProp для использования в глубокой сети. Это так же просто.
def init_rmsprop_states(feature_dim):
s_w = np.zeros((feature_dim, 1))
s_b = np.zeros(1)
return (s_w, s_b)
def rmsprop(params, states, hyperparams):
gamma, eps = hyperparams['gamma'], 1e-6
for p, s in zip(params, states):
s[:] = gamma * s + (1 - gamma) * np.square(p.grad)
p[:] -= hyperparams['lr'] * p.grad / np.sqrt(s + eps)

Мы установили начальную скорость обучения равной 0,01, а весовой член γ - 0,9. То есть s агрегирует в среднем за последние 1 / (1 - γ) = 10 наблюдений квадратного градиента.
data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
d2l.train_ch11(rmsprop, init_rmsprop_states(feature_dim),
{'lr': 0.01, 'gamma': 0.9}, data_iter, feature_dim);
loss: 0.244, 0.495 sec/epoch

4.8.3. Краткая реализация
Поскольку RMSProp - довольно популярный алгоритм, он также доступен в экземпляре Trainer. Все, что нам нужно сделать, это создать его экземпляр с помощью алгоритма с именем rmsprop, присвоив γ параметру gamma1.
d2l.train_concise_ch11('rmsprop', {'learning_rate': 0.01, 'gamma1': 0.9}, data_iter) 
loss: 0.245, 0.251 sec/epoch


Резюме
· RMSProp очень похож на Adagrad, поскольку оба используют квадрат градиента для масштабных коэффициентов.
· RMSProp разделяет импульс текущего усреднения. Однако RMSProp использует эту технику для настройки предварительного кондиционера с учетом коэффициентов.
· Скорость обучения должна планироваться экспериментатором на практике.
· Коэффициент γ определяет продолжительность истории при настройке шкалы координат.
Упражнения
1. Что произойдет экспериментально, если положить γ = 1? Почему?
2. Поверните задачу оптимизации, чтобы минимизировать f (x) = 0,1 (x1 + x2)2 + 2 (x1 - x2)2. Что происходит с конвергенцией?
3. Попробуйте, что происходит с RMSProp, на реальной задаче машинного обучения, например, на тренинге Fashion-MNIST. Поэкспериментируйте с разными вариантами, чтобы отрегулировать скорость обучения.
4. Хотели бы вы корректировать γ по мере оптимизации? Насколько чувствителен к этому RMSProp?
Обсуждения151

151 https://discuss.d2l.ai/t/356

4.9. Ададелта
Adadelta - еще один вариант AdaGrad (раздел 4.7). Основное отличие состоит в том, что он уменьшает степень адаптации скорости обучения к координатам. Более того, традиционно считается, что у него нет скорости обучения, поскольку он использует само количество изменений как калибровку для будущих изменений. Алгоритм был предложен в (Zeiler, 2012). Это довольно просто, учитывая обсуждение предыдущих алгоритмов.
4.9.1. Алгоритм
Вкратце, Adadelta использует две переменные состояния: st для хранения утечек среднего второго момента градиента и ∆xt для хранения утечек среднего второго момента изменения параметров в самой модели. Обратите внимание, что мы используем оригинальные обозначения и имена авторов для совместимости с другими публикациями и реализациями (другой реальной причины, по которой следует использовать разные греческие переменные, чтобы указать параметр, служащий той же цели в импульсе (Adagrad, RMSProp и Adadelta).
Вот технические подробности Adadelta. Учитывая, что параметр du jour равен ρ, мы получаем следующие утечки обновлений аналогично разделу 4.8:
st = ρst-1 + (1 - ρ) g2t.                                                                                        (4.9.1)
Отличие от Раздела 4.8 состоит в том, что мы выполняем обновления с измененным масштабом градиента g′t, т. е.
xt = xt-1 - g′t.                                                                                                       (4.9.2)
Так что же такое масштабированный градиент g't? Мы можем рассчитать это следующим образом:
g′t = √(∆xt-1 + ϵ)/√(st + ϵ) ⊙ gt,                                                                         (4.9.3)
где ∆xt-1 - среднее значение утечки возведенных в квадрат масштабированных градиентов g′t. Мы инициализируем ∆x0 равным 0 и обновляем его на каждом шаге с помощью g′t, т.е.
∆xt = ρ∆xt-1 + (1 - ρ) g′t2,                                                                                     (4.9.4)
и ϵ (небольшое значение, например, 10-5) добавляется для поддержания числовой стабильности.
4.9.2. Реализация
Adadelta необходимо поддерживать две переменные состояния для каждой переменной, st и ∆xt. Это дает следующую реализацию.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import np, npx
npx.set_np()
def init_adadelta_states(feature_dim):
s_w, s_b = np.zeros((feature_dim, 1)), np.zeros(1)
delta_w, delta_b = np.zeros((feature_dim, 1)), np.zeros(1)
return ((s_w, delta_w), (s_b, delta_b))
def adadelta(params, states, hyperparams):
rho, eps = hyperparams['rho'], 1e-5
for p, (s, delta) in zip(params, states):
# In-place updates via [:]
s[:] = rho * s + (1 - rho) * np.square(p.grad)
g = (np.sqrt(delta + eps) / np.sqrt(s + eps)) * p.grad
p[:] -= g
delta[:] = rho * delta + (1 - rho) * g * g

Выбор ρ = 0,9 соответствует периоду полураспада 10 для каждого обновления параметра. Это, как правило, работает достаточно хорошо. Получаем следующее поведение.
data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
d2l.train_ch11(adadelta, init_adadelta_states(feature_dim),
{'rho': 0.9}, data_iter, feature_dim);
loss: 0.243, 0.226 sec/epoch

Для краткой реализации мы просто используем алгоритм adadelta из класса Trainer. Это дает следующий однострочник для гораздо более компактного вызова.
d2l.train_concise_ch11('adadelta', {'rho': 0.9}, data_iter)
loss: 0.243, 0.459 sec/epoch



Резюме
· Adadelta не имеет параметра скорости обучения. Вместо этого он использует скорость изменения самого обратного параметра для адаптации скорости обучения.
· Adadelta требует двух переменных состояния для хранения вторых моментов градиента и изменения параметров.
· Adadelta использует ненадежные средние значения для получения текущей оценки соответствующей статистики.
Упражнения
1. Отрегулируйте значение ρ. Что случается?
2. Покажите, как реализовать алгоритм без использования g′t. Почему это может быть хорошей идеей?
3. Действительно ли скорость обучения Adadelta бесплатна? Не могли бы вы найти проблемы оптимизации, которые ломают Adadelta?
4. Сравните Adadelta с Adagrad и RMS prop, чтобы обсудить их поведение сходимости.
Обсуждения152
4.10. Адам
В обсуждениях, приведших к этому разделу, мы столкнулись с рядом методов эффективной оптимизации. Давайте вспомним их подробно здесь:
• Мы увидели, что раздел 4.4 более эффективен, чем градиентный спуск, при решении задач оптимизации, например, из-за присущей ему устойчивости к избыточным данным.
• Мы увидели, что Раздел 4.5 обеспечивает значительную дополнительную эффективность за счет векторизации, используя большие наборы наблюдений в одной минипакете. Это ключ к эффективной многомашинной, многопроцессорной и общей параллельной обработке.
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· В разделе 4.6 добавлен механизм агрегирования истории прошлых градиентов для ускорения сходимости.
· Раздел 4.7 использовал масштабирование по координатам, чтобы обеспечить вычислительно эффективный предварительный кондиционер.
· Раздел 4.8 отделил масштабирование по координатам от настройки скорости обучения.
Адам (Kingma & Ba, 2014) объединяет все эти методы в один эффективный алгоритм обучения.
Как и ожидалось, это алгоритм, который стал довольно популярным как один из наиболее надежных и эффективных алгоритмов оптимизации для использования в глубоком обучении. Однако он не без проблем. В частности, (Reddi et al., 2019) показывают, что бывают ситуации, когда Адам может расходиться из-за плохого контроля дисперсии. В последующей работе (Zaheer et al., 2018) было предложено исправление для Адама под названием Yogi, которое устраняет эти проблемы. Подробнее об этом позже. А пока давайте рассмотрим алгоритм Адама.
4.10.1. Алгоритм
Одним из ключевых компонентов Adam является то, что он использует экспоненциально взвешенные скользящие средние (также известные как усреднение с утечкой) для получения оценки как импульса, так и второго момента градиента. То есть он использует переменные состояния
vt ← β1vt-1 + (1 - β1) gt,
st ← β2st-1 + (1 - β2) g2t.                                                                                        (4.10.1)

Здесь β1 и β2 - неотрицательные весовые параметры. Обычно для них выбираются β1 = 0,9 и β2 = 0,999. То есть оценка дисперсии движется намного медленнее, чем член импульса.
Обратите внимание, что, если мы инициализируем v0 = s0 = 0, у нас будет значительный сдвиг изначально в сторону меньших значений. Это можно решить, используя тот факт, что ∑ti=0 βi = (1 - βt )/(1 – β) для перенормировки членов. Соответственно, нормализованные переменные состояния имеют вид
vˆt = vt/(1 - βt1) и ˆst = st /(1 - βt2).                                                                   (4.10.2)
Вооружившись правильными оценками, мы теперь можем записать уравнения обновления. Во-первых, мы изменяем масштаб градиента способом, очень похожим на RMSProp, чтобы получить
g′t = ηvˆt /√ˆst + ϵ.                                                                                                     (4.10.3)
В отличие от RMSProp наше обновление использует импульс v, а не сам градиент. Более того, есть небольшая косметическая разница, поскольку изменение масштаба происходит с использованием 1/√ˆst + ϵ вместо 1/√(ˆst + ϵ). Первый вариант, возможно, немного лучше работает на практике, отсюда и отклонение от RMSProp. Обычно мы выбираем ϵ = 10−6 для хорошего компромисса между числовой стабильностью и точностью.
Теперь у нас есть все необходимое для вычисления обновлений. Это немного неприятно, и у нас есть простое обновление формы
xt ← xt-1 - g′t.                                                                                                                 (4.10.4)
Когда мы рассматриваем дизайн Адама, его вдохновение становится очевидным. Импульс и масштаб четко видны в переменных состояния. Их довольно своеобразное определение вынуждает нас использовать термины debias (это может быть исправлено немного другим условием инициализации и обновления). Во-вторых, с учетом RMSProp комбинация обоих терминов довольно проста. Наконец, явная скорость обучения η позволяет нам контролировать длину шага для решения проблем сходимости.
4.10.2. Реализация
Реализовать Adam с нуля не так уж и сложно. Для удобства мы храним счетчик временного шага t в словаре гиперпараметров. В остальном все просто.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import np, npx
npx.set_np()
def init_adam_states(feature_dim):
v_w, v_b = np.zeros((feature_dim, 1)), np.zeros(1)
s_w, s_b = np.zeros((feature_dim, 1)), np.zeros(1)
return ((v_w, s_w), (v_b, s_b))
def adam(params, states, hyperparams):
beta1, beta2, eps = 0.9, 0.999, 1e-6
for p, (v, s) in zip(params, states):
v[:] = beta1 * v + (1 - beta1) * p.grad
s[:] = beta2 * s + (1 - beta2) * np.square(p.grad)
v_bias_corr = v / (1 - beta1 ** hyperparams['t'])
s_bias_corr = s / (1 - beta2 ** hyperparams['t'])
p[:] -= hyperparams['lr'] * v_bias_corr / (np.sqrt(s_bias_corr) + eps)
hyperparams['t'] += 1

Мы готовы использовать Адама для обучения модели. Мы используем скорость обучения η = 0,01.
data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
d2l.train_ch11(adam, init_adam_states(feature_dim),
{'lr': 0.01, 't': 1}, data_iter, feature_dim);
loss: 0.244, 0.562 sec/epoch

Более краткая реализация проста, поскольку man - один из алгоритмов, предоставляемых как часть библиотеки оптимизации тренера Gluon. Следовательно, нам нужно только передать конфигурацию параметров для реализации в Gluon.
d2l.train_concise_ch11('adam', {'learning_rate': 0.01}, data_iter)
loss: 0.244, 0.219 sec/epoch

4.10.3. Йоги
Одна из проблем Адама состоит в том, что он может не сойтись даже в выпуклых условиях, когда вторая оценка момента в st увеличивается. В качестве исправления (Zaheer et al., 2018) было предложено усовершенствованное обновление (и инициализация) для st. Чтобы понять, что происходит, давайте перепишем обновление Адама следующим образом:
st ← st-1 + (1 - β2) (g2t - st-1).                                                                          (4.10.5)
Если у g2t высокая дисперсия или обновления редки, st может слишком быстро забыть прошлые значения. Возможное решение - заменить g2t −st-1 на g2t ⊙ sgn (g2t −st-1). Теперь размах обновления больше не зависит от величины отклонения. Это дает йогические обновления 
st ← st-1 + (1 - β2) g2t ⊙ sgn (g2t - st-1).                                                           (4.10.6)
Кроме того, авторы советуют инициализировать импульс на большей начальной партии, а не просто начальную точечную оценку. Мы опускаем детали, поскольку они не имеют отношения к обсуждению, и поскольку даже без этого совпадение остается довольно хорошим.
def yogi(params, states, hyperparams):
beta1, beta2, eps = 0.9, 0.999, 1e-3
for p, (v, s) in zip(params, states):
v[:] = beta1 * v + (1 - beta1) * p.grad
s[:] = s + (1 - beta2) * np.sign(
np.square(p.grad) - s) * np.square(p.grad)
v_bias_corr = v / (1 - beta1 ** hyperparams['t'])
s_bias_corr = s / (1 - beta2 ** hyperparams['t'])
p[:] -= hyperparams['lr'] * v_bias_corr / (np.sqrt(s_bias_corr) + eps)
hyperparams['t'] += 1
data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
d2l.train_ch11(yogi, init_adam_states(feature_dim),
{'lr': 0.01, 't': 1}, data_iter, feature_dim);


Резюме
· Адам объединяет функции многих алгоритмов оптимизации в довольно надежное правило обновления.
· Созданный на основе RMSProp, Адам также использует EWMA для мини-пакетного стохастического градиента.
· Адам использует коррекцию смещения для корректировки медленного запуска при оценке импульса и второй момент.
· Для градиентов со значительными отклонениями мы можем столкнуться с проблемами сходимости. Их можно изменить, используя мини-батчи большего размера или переключившись на улучшенную оценку st. Йоги предлагает такую ​​альтернативу.
Упражнения
1. Отрегулируйте скорость обучения, наблюдайте и анализируйте экспериментальные результаты.
2. Можете ли вы переписать обновления импульса и второго момента так, чтобы они не требовали коррекции смещения?
3. Почему вам нужно снижать скорость обучения η по мере того, как мы сходимся?
4. Попытайтесь построить случай, в котором Адам расходится, а Йог сходится?
Обсуждения153
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4.11. Планирование скорости обучения
До сих пор мы в первую очередь сосредоточились на алгоритмах оптимизации того, как обновлять весовые векторы, а не на скорости, с которой они обновляются. Тем не менее, регулировка скорости обучения часто так же важна, как и сам алгоритм. Следует учитывать ряд аспектов:
· Совершенно очевидно, что величина скорости обучения имеет значение. Если он слишком велик, оптимизация расходится, если слишком мал, обучение занимает слишком много времени или мы получаем неоптимальный результат.
Ранее мы видели, что число обусловленности проблемы имеет значение (подробности см., например, в Разделе 4.6). Интуитивно это соотношение количества изменений в наименее чувствительном направлении к величине изменения для самого чувствительного направления.
· Во-вторых, не менее важна скорость распада. Если скорость обучения останется высокой, мы можем просто отскочить от минимума и, таким образом, не достичь оптимальности. В Разделе 4.5 мы обсудили это довольно подробно, и мы проанализировали гарантии производительности в Разделе 4.4. Короче говоря, мы хотим, чтобы скорость уменьшалась, но, вероятно, медленнее, чем O (t − 1/2), что было бы хорошим выбором для выпуклых задач.
· Другой не менее важный аспект - инициализация. Это касается как того, как параметры устанавливаются изначально (подробности см. в Разделе 4.8)), так и того, как они изменяются на начальном этапе.
Это называется разминкой, то есть как быстро мы начинаем двигаться к решению изначально. Большие шаги в начале могут быть нецелесообразными, в частности, из-за того, что начальный набор параметров является случайным. Первоначальные направления обновления тоже могут иметь меньшее значение.
· Наконец, существует ряд вариантов оптимизации, которые выполняют циклическую настройку скорости обучения. Это выходит за рамки данной главы. Мы рекомендуем читателю ознакомиться с подробностями в (Измайлов и др., 2018), например, как получить лучшие решения путем усреднения по всему пути параметров.
Учитывая тот факт, что для управления скоростью обучения требуется много деталей, в большинстве фреймворков глубокого обучения есть инструменты, позволяющие справиться с этим автоматически. В текущей главе мы рассмотрим влияние различных расписаний на точность, а также покажем, как этим можно эффективно управлять с помощью планировщика скорости обучения.
4.11.1. Проблема с игрушкой
Мы начнем с игрушечной задачи, которая достаточно дешева, чтобы ее можно было легко вычислить, но достаточно нетривиальна, чтобы проиллюстрировать некоторые ключевые аспекты. Для этого мы выбрали слегка модернизированную версию LeNet (relu вместо сигмоидной активации, MaxPooling вместо AveragePooling) применительно к Fashion MNIST. Более того, мы гибридизируем сеть для повышения производительности. Поскольку большая часть кода является стандартным, мы просто вводим основы без дальнейшего подробного обсуждения. При необходимости см. главу 2 для получения дополнительной информации.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import autograd, gluon, init, lr_scheduler, np, npx
from mxnet.gluon import nn
npx.set_np()
net = nn.HybridSequential()
net.add(nn.Conv2D(channels=6, kernel_size=5, padding=2, activation='relu'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Conv2D(channels=16, kernel_size=5, activation='relu'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Dense(120, activation='relu'),
nn.Dense(84, activation='relu'),
nn.Dense(10))
net.hybridize()
loss = gluon.loss.SoftmaxCrossEntropyLoss()
device = d2l.try_gpu()
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
# The code is almost identical to `d2l.train_ch6` that defined in the lenet
# section of chapter convolutional neural networks
def train(net, train_iter, test_iter, num_epochs, loss, trainer, device):
net.initialize(force_reinit=True, ctx=device, init=init.Xavier())
animator = d2l.Animator(xlabel='epoch', xlim=[0, num_epochs],
legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):
metric = d2l.Accumulator(3) # train_loss, train_acc, num_examples
for i, (X, y) in enumerate(train_iter):
X, y = X.as_in_ctx(device), y.as_in_ctx(device)
with autograd.record():
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
trainer.step(X.shape[0])
metric.add(l.sum(), d2l.accuracy(y_hat, y), X.shape[0])
train_loss = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
if (i + 1) % 50 == 0:
animator.add(epoch + i / len(train_iter),
(train_loss, train_acc, None))
test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
print(f'train loss {train_loss:.3f}, train acc {train_acc:.3f}, '
f'test acc {test_acc:.3f}')

Давайте посмотрим, что произойдет, если мы вызовем этот алгоритм с настройками по умолчанию, такими как скорость обучения 0,3, и проведем 30 итераций. Обратите внимание на то, как точность обучения продолжает расти, в то время, как прогресс с точки зрения точности тестов заходит за точку. Разрыв между обеими кривыми указывает на переобучение.
r, num_epochs = 0.3, 30
net.initialize(force_reinit=True, ctx=device, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train(net, train_iter, test_iter, num_epochs, loss, trainer, device)
train loss 0.180, train acc 0.930, test acc 0.866

4.11.2. Планировщики
Один из способов регулировки скорости обучения - это явно устанавливать ее на каждом шаге. Это удобно сделать с помощью метода set_learning_rate. Мы могли бы корректировать его вниз после каждой эпохи (или даже после каждой мини-серии), например, динамически в зависимости от того, как продвигается оптимизация.
trainer.set_learning_rate(0.1)
print(f'learning rate is now {trainer.learning_rate:.2f}')
learning rate is now 0.10

В более общем плане мы хотим определить планировщик. При вызове с количеством обновлений он возвращает соответствующее значение скорости обучения. Определим простой код, который устанавливает скорость обучения равной η = η0 (t + 1) - 1/2.
class SquareRootScheduler:
def __init__(self, lr=0.1):
self.lr = lr
def __call__(self, num_update):
return self.lr * pow(num_update + 1.0, -0.5)

Давайте изобразим его поведение по диапазону значений.
scheduler = SquareRootScheduler(lr=1.0)
d2l.plot(np.arange(num_epochs), 
[scheduler(t) for t in range(num_epochs)])

Теперь давайте посмотрим, как это отразится на обучении на Fashion-MNIST. Мы просто предоставляем планировщик как дополнительный аргумент к алгоритму обучения.
trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'lr_scheduler': scheduler})
train(net, train_iter, test_iter, num_epochs, loss, trainer, device)
train loss 0.302, train acc 0.890, test acc 0.884

Это сработало немного лучше, чем раньше. Следует отметить две вещи: кривая стала более плавной, чем раньше. Во-вторых, переоснащения стало меньше. К сожалению, это не совсем решенный вопрос, почему определенные стратегии приводят к меньшему переоснащению в теории. Есть некоторые аргументы в пользу того, что меньший размер шага приведет к параметрам, которые будут ближе к нулю и, следовательно, проще.
Однако это не объясняет полностью феномен, поскольку на самом деле мы не останавливаемся раньше, а просто мягко снижаем скорость обучения.
4.11.3. Политики
Хотя мы не можем охватить все разнообразие планировщиков скорости обучения, мы попытаемся дать краткий обзор популярных политик ниже. Обычный выбор - полиномиальный распад и кусочно-постоянные графики. Кроме того, было обнаружено, что графики скорости обучения с косинусом хорошо работают эмпирически при решении некоторых задач. Наконец, для решения некоторых проблем полезно разогреть оптимизатор перед использованием больших скоростей обучения.
4.11.3.1. Планировщик факторов
Альтернативой полиномиальному убыванию может быть мультипликативная, то есть ηt+1 ← ηt · α для α ∈ (0, 1). Чтобы предотвратить снижение скорости обучения за разумную нижнюю границу, уравнение обновления часто модифицируется на ηt+1 ← max (ηmin, ηt · α).
class FactorScheduler:
def __init__(self, factor=1, stop_factor_lr=1e-7, base_lr=0.1):
self.factor = factor
self.stop_factor_lr = stop_factor_lr
self.base_lr = base_lr
def __call__(self, num_update):
self.base_lr = max(self.stop_factor_lr, self.base_lr * self.factor)
return self.base_lr
scheduler = FactorScheduler(factor=0.9, stop_factor_lr=1e-2, base_lr=2.0)
d2l.plot(np.arange(50), [scheduler(t) for t in range(50)])

Это также можно сделать с помощью встроенного планировщика в MXNet через lr_scheduler.FactorScheduler. Требуется еще несколько параметров, таких как период прогрева, режим прогрева (линейный или постоянный), максимальное количество желаемых обновлений и т. д .; в дальнейшем мы будем использовать встроенные планировщики по мере необходимости, а здесь только объясним их функции. Как показано, при необходимости довольно просто создать собственный планировщик.
4.11.3.2. Многофакторный планировщик
Распространенной стратегией обучения глубоких сетей является сохранение кусочно-постоянной скорости обучения и частое ее уменьшение на заданную величину. То есть при заданном наборе времен уменьшения скорости, например, s = {5, 10, 20}, уменьшите ηt+1 ← ηt · α всякий раз, когда t ∈ s. Предполагая, что значения уменьшаются вдвое на каждом шаге, мы можем реализовать это следующим образом.
scheduler = lr_scheduler.MultiFactorScheduler(step=[15, 30], factor=0.5, base_lr=0.5)
d2l.plot(np.arange(num_epochs), 
[scheduler(t) for t in range(num_epochs)])

Интуиция, лежащая в основе этого графика кусочно-постоянной скорости обучения, заключается в том, что оптимизация продолжается до тех пор, пока не будет достигнута стационарная точка с точки зрения распределения весовых векторов.
Затем (и только тогда) мы уменьшаем скорость, чтобы получить прокси более высокого качества до хорошего локального минимума. В приведенном ниже примере показано, как это может привести к лучшим решениям.
trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'lr_scheduler': scheduler})
train(net, train_iter, test_iter, num_epochs, loss, trainer, device)
train loss 0.218, train acc 0.917, test acc 0.888

4.11.3.3. Планировщик косинусов
Довольно сложная эвристика была предложена (Лощилов и Хаттер, 2016). Он основан на наблюдении, что мы, возможно, не захотим слишком резко снижать скорость обучения вначале и, более того, мы можем захотеть «усовершенствовать» решение в конце, используя очень маленькую скорость обучения.
Это приводит к косинусоподобному графику со следующей функциональной формой для скоростей обучения в диапазоне t ∈ [0, T].
ηt = ηT + η0 - ηT2 (1 + cos (πt / T))                                                                     (4.11.1)
Здесь η0 - начальная скорость обучения, ηT - целевая скорость в момент времени T. Кроме того, при t > T мы просто закрепляем значение на ηT, не увеличивая его снова. В следующем примере мы устанавливаем максимальный шаг обновления T = 20.
scheduler = lr_scheduler.CosineScheduler(max_update=20, 
base_lr=0.5, final_lr=0.01)
d2l.plot(np.arange(num_epochs), 
[scheduler(t) for t in range(num_epochs)])

В контексте компьютерного зрения этот график может привести к улучшенным результатам. Однако обратите внимание, что такие улучшения не гарантируются (как видно ниже).
trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'lr_scheduler': scheduler})
train(net, train_iter, test_iter, num_epochs, loss, trainer, device)
train loss 0.346, train acc 0.877, test acc 0.873

4.11.3.4. Разогрев
В некоторых случаях инициализации параметров недостаточно, чтобы гарантировать хорошее решение. Это особенно проблема для некоторых сложных схем, которая может привести к нестабильной проблеме оптимизации. Мы могли бы решить эту проблему, выбрав достаточно малую скорость обучения, чтобы предотвратить расхождения в начале. К сожалению, это означает, что прогресс идет медленно. И наоборот, большая скорость обучения изначально ведет к дивергенции.
Довольно простое решение этой дилеммы - использовать период разминки, в течение которого скорость обучения увеличивается до своего начального максимума, и снижать скорость до конца процесса оптимизации.
Для простоты для этой цели обычно используется линейное увеличение. Это приводит к расписанию в форме, указанной ниже.
scheduler = lr_scheduler.CosineScheduler(20, 
      warmup_steps=5, base_lr=0.5, final_lr=0.01)
d2l.plot(np.arange(num_epochs), 
      [scheduler(t) for t in range(num_epochs)])

Обратите внимание, что сеть изначально сходится лучше (в частности, наблюдайте за производительностью в течение первых 5 эпох).
trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'lr_scheduler': scheduler})
train(net, train_iter, test_iter, num_epochs, loss, trainer, device)
train loss 0.386, train acc 0.859, test acc 0.861 

Разминку можно применить к любому планировщику (а не только к косинусу). Для более подробного обсуждения расписаний темпов обучения и многих других экспериментов см. также (Gotmare et al., 2018). В частности, вы обнаружите, что фаза разогрева ограничивает количество расхождений параметров в очень глубоких сетях.
Это имеет интуитивный смысл, поскольку мы ожидаем значительного расхождения из-за случайной инициализации в тех частях сети, которым требуется больше всего времени для достижения прогресса вначале.


Резюме
· Снижение скорости обучения во время обучения может привести к повышению точности и (наиболее часто) снижению переобучения модели.
· Кусочное снижение скорости обучения всякий раз, когда прогресс останавливается, на практике эффективно. По сути, это гарантирует, что мы эффективно подходим к подходящему решению и только затем уменьшаем внутреннюю дисперсию параметров за счет уменьшения скорости обучения.
· Планировщики косинусов популярны для решения некоторых проблем с компьютерным зрением. См., например, GluonCV154 для получения подробной информации о таком планировщике.
· Период разминки перед оптимизацией может предотвратить расхождение.
· Оптимизация служит нескольким целям в глубоком обучении. Помимо минимизации цели обучения, различные варианты выбора алгоритмов оптимизации и планирования скорости обучения могут привести к довольно разным объемам обобщения и переобучения на тестовом наборе (для того же количества ошибок обучения).

154 http://gluon-cv.mxnet.io

Упражнения
1. Поэкспериментируйте с поведением оптимизации для заданной фиксированной скорости обучения. Какую лучшую модель вы можете получить таким образом?
2. Как изменится сходимость, если изменить показатель уменьшения скорости обучения? Используйте PolyScheduler для вашего удобства в экспериментах.
3. Примените планировщик косинусов к большим задачам компьютерного зрения, например, к обучению ImageNet. Как это влияет на производительность по сравнению с другими планировщиками?
4. Как долго должна длиться разминка?
5. Можно ли подключить оптимизацию и выборку? Начните с использования результатов (Welling & Teh, 2011) по стохастической градиентной динамике Ланжевена.
